Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_2_a11, author = {L. S. Efremova}, title = {Multivalued functions and nonwandering set of skew products of maps of an interval with complicated dynamics of quotient map}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {93--98}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a11/} }
TY - JOUR AU - L. S. Efremova TI - Multivalued functions and nonwandering set of skew products of maps of an interval with complicated dynamics of quotient map JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 93 EP - 98 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_2_a11/ LA - ru ID - IVM_2016_2_a11 ER -
%0 Journal Article %A L. S. Efremova %T Multivalued functions and nonwandering set of skew products of maps of an interval with complicated dynamics of quotient map %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2016 %P 93-98 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2016_2_a11/ %G ru %F IVM_2016_2_a11
L. S. Efremova. Multivalued functions and nonwandering set of skew products of maps of an interval with complicated dynamics of quotient map. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 93-98. http://geodesic.mathdoc.fr/item/IVM_2016_2_a11/
[1] Katok A. B., Khasselblat B., Vvedenie v sovremennuyu teoriyu dinamicheskikh sistem, Faktorial, M., 1999
[2] Arteaga C., “Smooth triangular maps of the square with closed set of periodic points”, J. Math. Anal. and Appl., 196 (1995), 987–997 | DOI | MR | Zbl
[3] Kupka J., “The triangular maps with closed sets of periodic points”, J. Math. Anal. and Appl., 319 (2006), 302–314 | DOI | MR | Zbl
[4] Efremova L. S., “O nebluzhdayuschem mnozhestve i tsentre treugolnykh otobrazhenii s zamknutym mnozhestvom periodicheskikh tochek v baze”, Dinamich. sistemy i nelin. yavleniya, In-t matematiki AN Ukrainy, Kiev, 1990, 15–25 | MR
[5] Efremova L. S., “O nebluzhdayuschem mnozhestve i tsentre nekotorykh kosykh proizvedenii otobrazhenii intervala”, Izv. vuzov. Matem., 2006, no. 10, 19–28 | MR
[6] Guirao J. L. G., Pelao F. L., “On skew product maps with the base having a closed set of periodic points”, Intern. J. Comput. Math., 83 (2008), 441–445 | DOI | MR
[7] Guirao J. L. G., Rubio R. G., “Nonwandering set of skew product maps with base having closed set of periodic points”, J. Math. Anal. and Appl., 362 (2010), 350–354 | DOI | MR | Zbl
[8] Efremova L. S., “Remarks on the nonwandering set of skew products with a closed set of periodic points of the quotient map”, Nonlinear Maps and their Applic., Springer Proc. in Math. and Statist., 57, 2014, 39–58 | DOI | MR | Zbl
[9] Yakobson M. V., “O gladkikh otobrazheniyakh okruzhnosti v sebya”, Matem. sb., 85(127):2 (1971), 163–188 | MR | Zbl
[10] Efremova L. S., “O ponyatii $\Omega$-funktsii kosogo proizvedeniya otobrazhenii intervala”, Tr. mezhdunar. konf., posvyasch. 90-letiyu L. S. Pontryagina, v. 6, Itogi nauki i tekhn. ser. Sovremen. matem. i ee prilozh. Tematich. obzory, 67, Dinamich. sist., VINITI, M., 1999, 129–160 | MR | Zbl
[11] Kuratovskii K., Topologiya, v. 1, Mir, M., 1966 | MR
[12] Efremova L. S., “Teorema o razlozhenii prostranstva $C^1$-gladkikh kosykh proizvedenii so slozhnoi dinamikoi faktor-otobrazheniya”, Matem. sb., 204:11 (2013), 55–82 | DOI | MR | Zbl
[13] Efremova L. S., Periodicheskie dvizheniya diskretnykh poludinamicheskikh sistem, Diss. $\dots$ kand. fiz.-matem. nauk, Gorkii, 1981
[14] Coven E. M., Nitecki Z., “Nonwandering sets of the powers of maps of the interval”, Ergod. Theory and Dynam. Syst., 1 (1981), 9–31 | DOI | MR | Zbl