Integration of loaded Korteweg--de~Vries equation in a~class of periodic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we apply the inverse spectral problem to integrate the Korteweg–de Vries equation with a loaded term in a class of periodic functions.
Keywords: Korteweg–de Vries equation, Sturm–Liouville operator, inverse spectral problem, system of equations of Dubrovin, trace formulas.
@article{IVM_2016_2_a10,
     author = {A. B. Yakhshimuratov and M. M. Matyokubov},
     title = {Integration of loaded {Korteweg--de~Vries} equation in a~class of periodic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--92},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a10/}
}
TY  - JOUR
AU  - A. B. Yakhshimuratov
AU  - M. M. Matyokubov
TI  - Integration of loaded Korteweg--de~Vries equation in a~class of periodic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 87
EP  - 92
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a10/
LA  - ru
ID  - IVM_2016_2_a10
ER  - 
%0 Journal Article
%A A. B. Yakhshimuratov
%A M. M. Matyokubov
%T Integration of loaded Korteweg--de~Vries equation in a~class of periodic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 87-92
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a10/
%G ru
%F IVM_2016_2_a10
A. B. Yakhshimuratov; M. M. Matyokubov. Integration of loaded Korteweg--de~Vries equation in a~class of periodic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2016_2_a10/

[1] Novikov S. P., “Periodicheskaya zadacha Kortevega–de Friza. I”, Funkts. analiz i prilozh., 8:3 (1974), 54–66 | MR | Zbl

[2] Dubrovin B. A., Novikov S. P., “Periodicheskii i uslovno periodicheskii analogi mnogosolitonnykh reshenii uravneniya Kortevega–de Friza”, ZhETF, 67:12 (1974), 2131–2143 | MR

[3] Marchenko V. A., “Periodicheskaya zadacha Kortevega–de Friza”, Matem. sb., 95(137):3 (1974), 331–356 | MR | Zbl

[4] Dubrovin B. A., “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza v klasse konechnozonnykh potentsialov”, Funkts. analiz i prilozh., 9:3 (1975), 41–51 | MR | Zbl

[5] Its A. R., Matveev V. B., “Operatory Shrëdingera s konechnozonnym spektrom i $N$-solitonnye resheniya uravneniya Kortevega–de Friza”, Teor. i matem. fizika, 23:10 (1975), 51–68 | MR

[6] Lax P., “Periodic solutions of the KdV equations”, Lect. Appl. Math. AMS, 15 (1974), 85–96 | MR

[7] Lax P., “Periodic solutions of the KdV equation”, Comm. Pure Appl. Math., 28 (1975), 141–188 | DOI | MR | Zbl

[8] McKean H. P., Trubowitz E., “Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points”, Comm. Pure Appl. Math., 29 (1976), 143–226 | DOI | MR | Zbl

[9] Melnikov V. K., Metod integrirovaniya uravneniya Kortevega–de Vriza s samosoglasovannym istochnikom, Preprint No 2-88-11/798, OIYaI, Dubna, 1988

[10] Mel'nikov V. K., “Integration of the nonlinear Schrödinger equation with a source”, Inverse Probl., 8 (1992), 133–147 | DOI | MR | Zbl

[11] Leon J., Latifi A., “Solution of an initial-boundary value problem for coupled nonlinear waves”, J. Phys. A: Math. Gen., 23 (1990), 1385–1403 | DOI | MR | Zbl

[12] Urazboev G. U., Khasanov A. B., “Integrirovanie uravneniya Kortevega–de Friza s samosoglasovannym istochnikom pri nachalnykh dannykh tipa ‘stupenki’ ”, Teor. i matem. fizika, 129:1 (2001), 38–54 | DOI | MR | Zbl

[13] Khasanov A. B., Urazboev G. U., “Integrirovanie obschego uravneniya KdF s pravoi chastyu v klasse bystroubyvayuschikh funktsii”, Uzb. matem. zhurn., 2003, no. 2, 53–59 | MR

[14] Grinevich P. G., Taimanov I. A., “Spectral conservation laws for periodic nonlinear equations of the Melnikov type”, Amer. Math. Soc. Transl. Ser. 2, 224 (2008), 125–138 | MR | Zbl

[15] Orlov A. Yu., Schulman E. I., “Additional symmetries for integrable equations and conformal algebra representation”, Lett. Math. Phys., 12:3 (1986), 171–179 | DOI | MR | Zbl

[16] Khasanov A. B., Yakhshimuratov A. B., “Ob uravnenii Kortevega–de Friza s samosoglasovannym istochnikom v klasse periodicheskikh funktsii”, Teor. i matem. fizika, 164:2 (2010), 214–221 | DOI | Zbl

[17] Yakhshimuratov A. B., “Integrirovanie uravneniya Kortevega–de Friza so spetsialnym svobodnym chlenom v klasse periodicheskikh funktsii”, Ufimsk. matem. zhurn., 3:4 (2011), 144–150 | Zbl

[18] Yakhshimuratov A., “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions”, Math. Phys., Anal. and Geom., 14:2 (2011), 153–169 | DOI | MR | Zbl

[19] Stankevich I. V., “Ob odnoi zadache spektralnogo analiza dlya uravneniya Khilla”, DAN SSSR, 192:1 (1970), 34–37

[20] Trubowitz E., “The inverse problem for periodic potentials”, Comm. Pure. Appl. Math., 30 (1977), 321–337 | DOI | MR | Zbl

[21] Hochstadt H., “A generalization of Borg's inverse theorem for Hill's equations”, J. Math. Anal. and Appl., 102 (1984), 599–605 | DOI | MR | Zbl