The Schwarz problem in the case of denumerable set of intervals
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 10-17.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve a Schwarz problem for a plane domain whose boundary is a union of denumerable set of segments (including those arranged periodically) with an accumulation point at infinity. The problem is solved by the reduction to the corresponding Riemann problem in the case of a denumerable set of contours, including those arranged periodically.
Keywords: Schwarz problem for a plane, Riemann problem, singly periodic arrangement of segments, singly periodic function, doubly periodic arrangement of segments, elliptic function, quasi-elliptic function.
@article{IVM_2016_2_a1,
     author = {L. I. Vafina and I. G. Salekhova},
     title = {The {Schwarz} problem in the case of denumerable set of intervals},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--17},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a1/}
}
TY  - JOUR
AU  - L. I. Vafina
AU  - I. G. Salekhova
TI  - The Schwarz problem in the case of denumerable set of intervals
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 10
EP  - 17
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a1/
LA  - ru
ID  - IVM_2016_2_a1
ER  - 
%0 Journal Article
%A L. I. Vafina
%A I. G. Salekhova
%T The Schwarz problem in the case of denumerable set of intervals
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 10-17
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a1/
%G ru
%F IVM_2016_2_a1
L. I. Vafina; I. G. Salekhova. The Schwarz problem in the case of denumerable set of intervals. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 10-17. http://geodesic.mathdoc.fr/item/IVM_2016_2_a1/

[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Fizmatgiz, M., 1962

[2] Salekhova I. G., “Zadacha Rimana v sluchae schetnogo mnozhestva razomknutykh dug”, Teoriya funktsii kompleksnogo peremennogo i kraevye zadachi, 2, Izd-vo ChGU, Cheboksary, 1974, 131–140

[3] Salekhova I. G., “Odnorodnaya zadacha Rimana v sluchae schetnogo mnozhestva razomknutykh dug”, Izv. vuzov. Matem., 1975, no. 6, 124–135 | MR | Zbl

[4] Aksenteva E. P., Salekhova I. G., “Zadacha Rimana v sluchae dvoyakoperiodicheskogo raspolozheniya dug”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 150, no. 4, 2008, 66–79 | Zbl

[5] Salekhova I. G., Yakhina M. M., “Smeshannaya zadacha dlya ploskosti s pryamolineinymi razrezami”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 155, no. 2, 2013, 108–122

[6] Chibrikova L. I., Osnovnye granichnye zadachi dlya analiticheskikh funktsii, Izd-vo Kazansk. un-ta, Kazan, 1977

[7] Aksenteva E. P., Funktsii Veiershtrassa v kraevykh zadachakh, Metodicheskaya razrabotka k spetsialnomu kursu, Izd-vo Kazansk. un-ta, Kazan, 1994