Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_2_a1, author = {L. I. Vafina and I. G. Salekhova}, title = {The {Schwarz} problem in the case of denumerable set of intervals}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--17}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a1/} }
L. I. Vafina; I. G. Salekhova. The Schwarz problem in the case of denumerable set of intervals. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 10-17. http://geodesic.mathdoc.fr/item/IVM_2016_2_a1/
[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Fizmatgiz, M., 1962
[2] Salekhova I. G., “Zadacha Rimana v sluchae schetnogo mnozhestva razomknutykh dug”, Teoriya funktsii kompleksnogo peremennogo i kraevye zadachi, 2, Izd-vo ChGU, Cheboksary, 1974, 131–140
[3] Salekhova I. G., “Odnorodnaya zadacha Rimana v sluchae schetnogo mnozhestva razomknutykh dug”, Izv. vuzov. Matem., 1975, no. 6, 124–135 | MR | Zbl
[4] Aksenteva E. P., Salekhova I. G., “Zadacha Rimana v sluchae dvoyakoperiodicheskogo raspolozheniya dug”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 150, no. 4, 2008, 66–79 | Zbl
[5] Salekhova I. G., Yakhina M. M., “Smeshannaya zadacha dlya ploskosti s pryamolineinymi razrezami”, Uchen. zap. Kazansk. un-ta. Ser. Fiz.-matem. nauki, 155, no. 2, 2013, 108–122
[6] Chibrikova L. I., Osnovnye granichnye zadachi dlya analiticheskikh funktsii, Izd-vo Kazansk. un-ta, Kazan, 1977
[7] Aksenteva E. P., Funktsii Veiershtrassa v kraevykh zadachakh, Metodicheskaya razrabotka k spetsialnomu kursu, Izd-vo Kazansk. un-ta, Kazan, 1994