Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For mixed type equation with two perpendicular singularity lines, we consider one boundary problem in the domain whose elliptic and hyperbolic part is rectangle and vertical half-strip, respectively. This problem differs from the Dirichlet problem by the fact that at the left boundary of the rectangle and of half-strip we specify not the unknown function, but the order of zero. We prove uniqueness of boundary problem solution by a spectral method with the use of Fourier–Bessel series. We give substantiation of uniform convergence of corresponding series with some restrictions upon the conditions of the problem.
Keywords: mixed type equations, equation with singular coefficients, spectral method, Fourier–Bessel series, Bessel functions.
@article{IVM_2016_2_a0,
     author = {A. A. Abashkin},
     title = {Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     year = {2016},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/}
}
TY  - JOUR
AU  - A. A. Abashkin
TI  - Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 3
EP  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/
LA  - ru
ID  - IVM_2016_2_a0
ER  - 
%0 Journal Article
%A A. A. Abashkin
%T Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 3-9
%N 2
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/
%G ru
%F IVM_2016_2_a0
A. A. Abashkin. Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/

[1] Pulkin S. P., “O edinstvennosti resheniya singulyarnoi zadachi Gellerstedta”, Izv. vuzov. Matem., 1960, no. 6, 214–225 | MR | Zbl

[2] Volkodavov V. F., Nosov V. A., “Reshenie zadachi $T_\alpha$ dlya odnogo uravneniya smeshannogo tipa v neogranichennoi oblasti spetsialnogo vida”, Volzhsk. matem. sb., 1971, no. 9, 32–38 | MR

[3] Repin O. A., “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiziko-matem. nauki, 2005, no. 34, 5–9 | DOI

[4] Marichev O. I., Kilbas A. A., Repin O. A., Kraevye zadachi dlya uravnenii v chastnykh proizvodnykh s razryvnymi koeffitsientami, Izd-vo SGEU, Samara, 2008

[5] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | MR | Zbl

[6] Sabitov K. B., Suleimanova A. Kh., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa vtorogo roda v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2007, no. 4, 43–54 | MR | Zbl

[7] Sabitova Yu. K., “Nelokalnaya zadacha dlya uravneniya Lavrenteva–Bitsadze v pryamougolnoi oblasti”, Tr. Sterlitamaksk. filiala AN RB, 2009, 94–102

[8] Sabitova Yu. K., Bakhristova A. A., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s operatorom Lavrenteva–Bitsadze”, Tr. Sterlitamaksk. filiala AN RB, 2009, 103–110

[9] Sabitov K. B., Sidorenko O. G., “Zadacha s usloviyami periodichnosti dlya vyrozhdayuschegosya uravneniya smeshannogo tipa”, Differents. uravneniya, 46:1 (2010), 105–113 | MR | Zbl

[10] Sabitov K. B., “Kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa s nelokalnym integralnym usloviem”, Differents. uravneniya, 46:10 (2010), 1468–1478 | MR | Zbl

[11] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 37:11 (2001), 1565–1567 | MR | Zbl

[12] Abashkin A. A., “Ob odnoi nelokalnoi zadache dlya osesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiziko-matem. nauki, 2011, no. 3(24), 26–34 | DOI

[13] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Lan, SPb., 2010

[14] Vatson G. N., Teoriya besselevykh funktsii, In. lit., M., 1949