Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_2_a0, author = {A. A. Abashkin}, title = {Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {3--9}, publisher = {mathdoc}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/} }
TY - JOUR AU - A. A. Abashkin TI - Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 3 EP - 9 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/ LA - ru ID - IVM_2016_2_a0 ER -
%0 Journal Article %A A. A. Abashkin %T Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2016 %P 3-9 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/ %G ru %F IVM_2016_2_a0
A. A. Abashkin. Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/
[1] Pulkin S. P., “O edinstvennosti resheniya singulyarnoi zadachi Gellerstedta”, Izv. vuzov. Matem., 1960, no. 6, 214–225 | MR | Zbl
[2] Volkodavov V. F., Nosov V. A., “Reshenie zadachi $T_\alpha$ dlya odnogo uravneniya smeshannogo tipa v neogranichennoi oblasti spetsialnogo vida”, Volzhsk. matem. sb., 1971, no. 9, 32–38 | MR
[3] Repin O. A., “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiziko-matem. nauki, 2005, no. 34, 5–9 | DOI
[4] Marichev O. I., Kilbas A. A., Repin O. A., Kraevye zadachi dlya uravnenii v chastnykh proizvodnykh s razryvnymi koeffitsientami, Izd-vo SGEU, Samara, 2008
[5] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | MR | Zbl
[6] Sabitov K. B., Suleimanova A. Kh., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa vtorogo roda v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2007, no. 4, 43–54 | MR | Zbl
[7] Sabitova Yu. K., “Nelokalnaya zadacha dlya uravneniya Lavrenteva–Bitsadze v pryamougolnoi oblasti”, Tr. Sterlitamaksk. filiala AN RB, 2009, 94–102
[8] Sabitova Yu. K., Bakhristova A. A., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s operatorom Lavrenteva–Bitsadze”, Tr. Sterlitamaksk. filiala AN RB, 2009, 103–110
[9] Sabitov K. B., Sidorenko O. G., “Zadacha s usloviyami periodichnosti dlya vyrozhdayuschegosya uravneniya smeshannogo tipa”, Differents. uravneniya, 46:1 (2010), 105–113 | MR | Zbl
[10] Sabitov K. B., “Kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa s nelokalnym integralnym usloviem”, Differents. uravneniya, 46:10 (2010), 1468–1478 | MR | Zbl
[11] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 37:11 (2001), 1565–1567 | MR | Zbl
[12] Abashkin A. A., “Ob odnoi nelokalnoi zadache dlya osesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiziko-matem. nauki, 2011, no. 3(24), 26–34 | DOI
[13] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Lan, SPb., 2010
[14] Vatson G. N., Teoriya besselevykh funktsii, In. lit., M., 1949