Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

For mixed type equation with two perpendicular singularity lines, we consider one boundary problem in the domain whose elliptic and hyperbolic part is rectangle and vertical half-strip, respectively. This problem differs from the Dirichlet problem by the fact that at the left boundary of the rectangle and of half-strip we specify not the unknown function, but the order of zero. We prove uniqueness of boundary problem solution by a spectral method with the use of Fourier–Bessel series. We give substantiation of uniform convergence of corresponding series with some restrictions upon the conditions of the problem.
Keywords: mixed type equations, equation with singular coefficients, spectral method, Fourier–Bessel series, Bessel functions.
@article{IVM_2016_2_a0,
     author = {A. A. Abashkin},
     title = {Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/}
}
TY  - JOUR
AU  - A. A. Abashkin
TI  - Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 3
EP  - 9
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/
LA  - ru
ID  - IVM_2016_2_a0
ER  - 
%0 Journal Article
%A A. A. Abashkin
%T Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 3-9
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/
%G ru
%F IVM_2016_2_a0
A. A. Abashkin. Solving one boundary-value problem for mixed type equation with two singular lines with the use of spectral method. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2016), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2016_2_a0/

[1] Pulkin S. P., “O edinstvennosti resheniya singulyarnoi zadachi Gellerstedta”, Izv. vuzov. Matem., 1960, no. 6, 214–225 | MR | Zbl

[2] Volkodavov V. F., Nosov V. A., “Reshenie zadachi $T_\alpha$ dlya odnogo uravneniya smeshannogo tipa v neogranichennoi oblasti spetsialnogo vida”, Volzhsk. matem. sb., 1971, no. 9, 32–38 | MR

[3] Repin O. A., “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa s singulyarnym koeffitsientom”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiziko-matem. nauki, 2005, no. 34, 5–9 | DOI

[4] Marichev O. I., Kilbas A. A., Repin O. A., Kraevye zadachi dlya uravnenii v chastnykh proizvodnykh s razryvnymi koeffitsientami, Izd-vo SGEU, Samara, 2008

[5] Sabitov K. B., “Zadacha Dirikhle dlya uravnenii smeshannogo tipa v pryamougolnoi oblasti”, Dokl. RAN, 413:1 (2007), 23–26 | MR | Zbl

[6] Sabitov K. B., Suleimanova A. Kh., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa vtorogo roda v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2007, no. 4, 43–54 | MR | Zbl

[7] Sabitova Yu. K., “Nelokalnaya zadacha dlya uravneniya Lavrenteva–Bitsadze v pryamougolnoi oblasti”, Tr. Sterlitamaksk. filiala AN RB, 2009, 94–102

[8] Sabitova Yu. K., Bakhristova A. A., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa s operatorom Lavrenteva–Bitsadze”, Tr. Sterlitamaksk. filiala AN RB, 2009, 103–110

[9] Sabitov K. B., Sidorenko O. G., “Zadacha s usloviyami periodichnosti dlya vyrozhdayuschegosya uravneniya smeshannogo tipa”, Differents. uravneniya, 46:1 (2010), 105–113 | MR | Zbl

[10] Sabitov K. B., “Kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa s nelokalnym integralnym usloviem”, Differents. uravneniya, 46:10 (2010), 1468–1478 | MR | Zbl

[11] Moiseev E. I., “O razreshimosti odnoi nelokalnoi kraevoi zadachi”, Differents. uravneniya, 37:11 (2001), 1565–1567 | MR | Zbl

[12] Abashkin A. A., “Ob odnoi nelokalnoi zadache dlya osesimmetricheskogo uravneniya Gelmgoltsa”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. Fiziko-matem. nauki, 2011, no. 3(24), 26–34 | DOI

[13] Lebedev N. N., Spetsialnye funktsii i ikh prilozheniya, Lan, SPb., 2010

[14] Vatson G. N., Teoriya besselevykh funktsii, In. lit., M., 1949