Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_1_a7, author = {I. V. Konnov}, title = {A method of bi-coordinate variations with tolerances and its convergence}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {80--85}, publisher = {mathdoc}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_1_a7/} }
I. V. Konnov. A method of bi-coordinate variations with tolerances and its convergence. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2016_1_a7/
[1] Bertsekas D. P., Tsitsiklis J. N., Parallel and distributed computation: numerical methods, Prentice-Hall, London, 1989 | Zbl
[2] Konnov I. V., Equilibrium models and variational inequalities, Elsevier, Amsterdam, 2007 | MR
[3] Patriksson M., “A survey on the continuous nonlinear resource allocation problem”, Eur. J. Oper. Res., 185:1 (2008), 1–46 | DOI | MR | Zbl
[4] Burges C. J. C., “A tutorial on support vector machines for pattern recognition”, Data Mining Know. Disc., 2:2 (1998), 121–167 | DOI
[5] Tseng P., Yun S., “A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training”, J. Comput. Optim. Appl., 47:2 (2010), 179–206 | DOI | MR | Zbl
[6] Cevher V., Becker S., Schmidt M., “Convex optimization for big data”, Signal Process. Magaz., 31:5 (2014), 32–43 | DOI
[7] Korpelevich G. M., “Metod pokoordinatnogo spuska dlya zadach minimizatsii s ogranicheniyami lineinykh neravenstv i matrichnykh igr”, Matem. met. resh. ekon. zadach, 9, Nauka, M., 1980, 84–97 | MR
[8] Beck A., “The $2$-coordinate descent method for solving double-sided simplex constrained minimization problems”, J. Optim. Theory. Appl., 162:3 (2014), 892–919 | DOI | MR | Zbl
[9] Konnov I. V., Selective bi-coordinate variations for resource allocation type problems, SSRN Paper No 2519662. Available at SSRN: , November 5, 2014, 17 pp. http://ssrn.com/abstract=2519662
[10] Konnov I. V., Nelineinaya optimizatsiya i variatsionnye neravenstva, Izd-vo Kazansk. un-ta, Kazan, 2013
[11] Demyanov V. F., Rubinov A. M., Priblizhennye metody resheniya ekstremalnykh zadach, LGU, L., 1968
[12] Levitin E. S., Polyak B. T., “Metody minimizatsii pri nalichii ogranichenii”, Zhurn. vychisl. matem. i matem. fiz., 6:5 (1966), 787–823 | MR | Zbl
[13] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR