A method of bi-coordinate variations with tolerances and its convergence
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 80-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a method of bi-coordinate variations for optimal resource allocation problems, which involve simplex type constraints. It consists in making coordinate-wise steps together with special threshold control and tolerances whose values reduce sequentially. The method is simpler essentially than the usual gradient ones, which enables one to apply it to large dimensional optimization problems. We establish its convergence and rate of convergence under rather mild assumptions.
Keywords: optimization problems, resource allocation, threshold control, rate of convergence.
Mots-clés : bi-coordinate variations
@article{IVM_2016_1_a7,
     author = {I. V. Konnov},
     title = {A method of bi-coordinate variations with tolerances and its convergence},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--85},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_1_a7/}
}
TY  - JOUR
AU  - I. V. Konnov
TI  - A method of bi-coordinate variations with tolerances and its convergence
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 80
EP  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_1_a7/
LA  - ru
ID  - IVM_2016_1_a7
ER  - 
%0 Journal Article
%A I. V. Konnov
%T A method of bi-coordinate variations with tolerances and its convergence
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 80-85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_1_a7/
%G ru
%F IVM_2016_1_a7
I. V. Konnov. A method of bi-coordinate variations with tolerances and its convergence. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2016_1_a7/

[1] Bertsekas D. P., Tsitsiklis J. N., Parallel and distributed computation: numerical methods, Prentice-Hall, London, 1989 | Zbl

[2] Konnov I. V., Equilibrium models and variational inequalities, Elsevier, Amsterdam, 2007 | MR

[3] Patriksson M., “A survey on the continuous nonlinear resource allocation problem”, Eur. J. Oper. Res., 185:1 (2008), 1–46 | DOI | MR | Zbl

[4] Burges C. J. C., “A tutorial on support vector machines for pattern recognition”, Data Mining Know. Disc., 2:2 (1998), 121–167 | DOI

[5] Tseng P., Yun S., “A coordinate gradient descent method for linearly constrained smooth optimization and support vector machines training”, J. Comput. Optim. Appl., 47:2 (2010), 179–206 | DOI | MR | Zbl

[6] Cevher V., Becker S., Schmidt M., “Convex optimization for big data”, Signal Process. Magaz., 31:5 (2014), 32–43 | DOI

[7] Korpelevich G. M., “Metod pokoordinatnogo spuska dlya zadach minimizatsii s ogranicheniyami lineinykh neravenstv i matrichnykh igr”, Matem. met. resh. ekon. zadach, 9, Nauka, M., 1980, 84–97 | MR

[8] Beck A., “The $2$-coordinate descent method for solving double-sided simplex constrained minimization problems”, J. Optim. Theory. Appl., 162:3 (2014), 892–919 | DOI | MR | Zbl

[9] Konnov I. V., Selective bi-coordinate variations for resource allocation type problems, SSRN Paper No 2519662. Available at SSRN: , November 5, 2014, 17 pp. http://ssrn.com/abstract=2519662

[10] Konnov I. V., Nelineinaya optimizatsiya i variatsionnye neravenstva, Izd-vo Kazansk. un-ta, Kazan, 2013

[11] Demyanov V. F., Rubinov A. M., Priblizhennye metody resheniya ekstremalnykh zadach, LGU, L., 1968

[12] Levitin E. S., Polyak B. T., “Metody minimizatsii pri nalichii ogranichenii”, Zhurn. vychisl. matem. i matem. fiz., 6:5 (1966), 787–823 | MR | Zbl

[13] Polyak B. T., Vvedenie v optimizatsiyu, Nauka, M., 1983 | MR