Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2016_1_a6, author = {V. G. Zvyagin and S. V. Kornev}, title = {Existence of an attractor for three-dimensional model of the {Bingham} fluid motion}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {74--79}, publisher = {mathdoc}, number = {1}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2016_1_a6/} }
TY - JOUR AU - V. G. Zvyagin AU - S. V. Kornev TI - Existence of an attractor for three-dimensional model of the Bingham fluid motion JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 74 EP - 79 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_1_a6/ LA - ru ID - IVM_2016_1_a6 ER -
V. G. Zvyagin; S. V. Kornev. Existence of an attractor for three-dimensional model of the Bingham fluid motion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 74-79. http://geodesic.mathdoc.fr/item/IVM_2016_1_a6/
[1] Shelukhin V. V., “Bingham viscoplastic as a limit of non-Newtonian fluids”, J. Math. Fluid Mech., 4:2 (2002), 109–127 | DOI | MR | Zbl
[2] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, 1980 | MR
[3] Kim Jong Uhn, “On the initial-boundary value problem for a Bingham fluid in a three dimensional domain”, Trans. Amer. Math. Soc., 304:2 (1987), 751–770 | MR | Zbl
[4] Seregin G. A., “O dinamicheskoi sisteme, porozhdennoi dvumernymi uravneniyami dvizheniya sredy Bingama”, Kraevye zadachi matem. fiz. i smezhn. vopr. teorii funktsii. 22, Zap. nauchn. sem. LOMI, 188, Nauka, SPb., 1991, 128–142 | MR | Zbl
[5] Zvyagin V. G., Kondratev S. K., “Attraktory uravnenii nenyutonovskoi gidrodinamiki”, UMN, 69:5 (2014), 81–156 | DOI | MR | Zbl
[6] Chepyzhov V. V., Vishik M. I., “Evolution equations and their trajectory attractors”, J. de Math. Pures et Appl., 76:10 (1997), 913–964 | DOI | MR | Zbl