Rellich type inequalities in domains of the Euclidean space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 69-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

For smooth functions supported in a domain of the Euclidean space we investigate two Rellich type inequalities with weights which are powers of the distance function. We prove that for an arbitrary plane domain there exist positive Rellich constants in these inequalities if and only if the boundary of the domain is a uniformly perfect set. Moreover, we obtain explicit estimates of constants in function of geometric domain characteristics. Also, we find sharp constants in these Rellich type inequalities for all non-convex domains of dimension $d\geq2$ provided that the domains satisfy the exterior sphere condition with certain restriction on the radius of spheres.
Keywords: Rellich type inequality, uniformly perfect set, distance function
Mots-clés : non-convex domain.
@article{IVM_2016_1_a5,
     author = {F. G. Avkhadiev},
     title = {Rellich type inequalities in domains of the {Euclidean} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--73},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_1_a5/}
}
TY  - JOUR
AU  - F. G. Avkhadiev
TI  - Rellich type inequalities in domains of the Euclidean space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 69
EP  - 73
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_1_a5/
LA  - ru
ID  - IVM_2016_1_a5
ER  - 
%0 Journal Article
%A F. G. Avkhadiev
%T Rellich type inequalities in domains of the Euclidean space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 69-73
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_1_a5/
%G ru
%F IVM_2016_1_a5
F. G. Avkhadiev. Rellich type inequalities in domains of the Euclidean space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 69-73. http://geodesic.mathdoc.fr/item/IVM_2016_1_a5/

[1] Rellich F., Perturbation theory of eigenvalue problems, Gordon and Breach, New York–London–Paris, 1969 | MR | Zbl

[2] Davies E. B., Hinz A. M., “Explicit constants for Rellich inequalities in $L^p(\Omega)$”, Math. Z., 227:3 (1998), 511–523 | DOI | MR | Zbl

[3] Owen M. P., “The Hardy–Rellich inequality for polyharmonic operators”, Proc. Royal Soc. Edinburgh A, 129:9 (1999), 825–835 | DOI | MR

[4] Barbatis M. G., “Improved Rellich inequalities for the polyharmonic operator”, Indiana University Math. J., 55:4 (2006), 1401–1422 | DOI | MR | Zbl

[5] Barbatis M. G., Tertikas A., “On a class of Rellich inequalities”, J. Comp. Appl. Math., 194:1 (2006), 156–172 | DOI | MR | Zbl

[6] Adimurthi, Grossi M., Santra S., “Optimal Hardy–Rellich inequalities, maximum principle and related eigenvalue problem”, J. Func. Anal., 240:1 (2006), 36–83 | DOI | MR | Zbl

[7] Evans W. D., Lewis R. T., “Hardy and Rellich inequalities with remainders”, J. Math. Inequal., 1:4 (2007), 473–490 | DOI | MR | Zbl

[8] Avkhadiev F. G., “Hardy type inequalities in higher dimensions with explicit estimate of constants”, Lobachevskii J. Math., 21 (2006), 3–31, (electronic) | MR | Zbl

[9] Avkhadiev F. G., “Neravenstva tipa Khardi v ploskikh i prostranstvennykh otkrytykh mnozhestvakh”, Tr. matem. inst. im. V. A. Steklova, 255, 2006, 8–18 | MR | Zbl

[10] Avkhadiev F. G., Wirths K.-J., “Unified Poincaré and Hardy inequalities with sharp constants for convex domains”, Z. Angew. Math. Mech. (ZAMM), 87:8–9 (2007), 632–642 | DOI | MR | Zbl

[11] Avkhadiev F. G., Laptev A., “Hardy inequalities for nonconvex domains”, Around research of Vladimir Maz'ya, v. I, Intern. Math. Series, 11, Function spaces, Springer, 2010, 1–12 | DOI | MR | Zbl

[12] Avkhadiev F. G., Wirths K.-J., “Sharp Hardy-type inequalities with Lamb's constants”, Bull. Belg. Math. Soc. Simon Stevin, 18:4 (2011), 723–736 | MR | Zbl

[13] Avkhadiev F. G., “Geometricheskoe opisanie oblastei, dlya kotorykh konstanta Khardi ravna $1/4$”, Izv. RAN. Ser. matem., 78:5 (2014), 3–26 | DOI | MR | Zbl

[14] Avkhadiev F. G., Shafigullin I. K., “Otsenki konstant Khardi pri trubchatom rasshirenii mnozhestv i v oblastyakh s konechnymi granichnymi momentami”, Matem. trudy, 16:2 (2013), 3–12 | MR | Zbl

[15] Avkhadiev F. G., Shafigullin I. K., “Tochnye otsenki konstant Khardi dlya oblastei so spetsialnymi granichnymi svoistvami”, Izv. vuzov. Matem., 2014, no. 2, 69–73 | Zbl

[16] Avkhadiev F. G., “Tochnye konstanty v neravenstvakh tipa Khardi”, Izv. vuzov. Matem., 2015, no. 10, 61–65 | Zbl

[17] Carleson L., Gamelin T. W., Complex dynamics, Springer, New York, 1993 | MR | Zbl

[18] Avkhadiev F. G., Wirths K.-J., Schwarz–Pick type inequalities, Birkhäuser Verlag, Basel–Boston–Berlin, 2009 | MR | Zbl

[19] Mazya V. G., Prostranstva S. L. Soboleva, Izd-vo Leningr. un-ta, L., 1985 | MR