On finiteness of discrete spectrum of three-particle Schr\"odinger operator on a~lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 27-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

On three-dimensional lattice we consider a system of three quantum particles (two of them are identical (fermions) and the third one is of another nature) that interact with the help of paired short-range potentials of attraction. We prove the finiteness of a number of bound states of respective Schrödinger operator in a case when potentials satisfy some conditions and the zero is a regular point for two-particle subhamiltonian. We find a set of particles masses' values such that the Schrödinger operator may have only finite number of eigenvalues lying to the left from essential spectrum.
Keywords: three-particle system on a lattice, Schrödinger operator, essential spectrum, discrete spectrum, Vineberg equation, virtual level.
@article{IVM_2016_1_a2,
     author = {M. E. Muminov and E. M. Shermatova},
     title = {On finiteness of discrete spectrum of three-particle {Schr\"odinger} operator on a~lattice},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {27--35},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_1_a2/}
}
TY  - JOUR
AU  - M. E. Muminov
AU  - E. M. Shermatova
TI  - On finiteness of discrete spectrum of three-particle Schr\"odinger operator on a~lattice
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 27
EP  - 35
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_1_a2/
LA  - ru
ID  - IVM_2016_1_a2
ER  - 
%0 Journal Article
%A M. E. Muminov
%A E. M. Shermatova
%T On finiteness of discrete spectrum of three-particle Schr\"odinger operator on a~lattice
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 27-35
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_1_a2/
%G ru
%F IVM_2016_1_a2
M. E. Muminov; E. M. Shermatova. On finiteness of discrete spectrum of three-particle Schr\"odinger operator on a~lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 27-35. http://geodesic.mathdoc.fr/item/IVM_2016_1_a2/

[1] Efimov V. N., “Svyazannye sostoyaniya tpekh pezonansno vzaimodeistvuyuschikh chastits”, Yadepnaya fizika, 12:5 (1970), 1080–1091

[2] Amado R. D., Noble J. V., “Efimov's effect: a new pathology of three-particle systems. II”, Phys. Rev. D, 5:8 (1971), 1992–2002 | DOI

[3] Mepkupev S. P., Faddeev L. D., Kvantovaya teopiya passeyaniya dlya sistem neskolkikh chastits, Nauka, M., 1985

[4] Yafaev D. P., “K teopii diskpetnogo spektpa tpekhchastichnogo opepatopa Shpedingepa”, Matem. sb., 94(136):4 (1974), 567–593 | MR | Zbl

[5] Ovchinnikov Yu. N., Sigal I. M., “Number of bound states of three-body systems and Efimov's effect”, Ann. Phys., 123:2 (1989), 274–295 | DOI | MR

[6] Tamura H., “The Efimov effect of three-body Schrödinger operator”, J. Funct. Anal., 95:2 (1991), 433–459 | DOI | MR | Zbl

[7] Abdullaev Zh. I., Lakaev S. N., “Konechnost diskpetnogo spektpa tpekhchastichnogo opepatopa Shpëdingepa na peshetke”, Teopet. i matem. fizika, 111:1 (1997), 94–108 | DOI | MR | Zbl

[8] Lakaev S. N., Samatov S. M., “O konechnosti diskretnogo spektra gamiltoniana sistemy trekh proizvolnykh chastits na reshetke”, Teop. i matem. fizika, 129:3 (2001), 415–431 | DOI | MR | Zbl

[9] Lakaev S. N., Muminov M. E., “Suschestvennyi i diskretnyi spektr trekhchastichnogo operatora Shrëdingera na reshetke”, Teor. i matem. fizika, 135:3 (2003), 478–503 | DOI | MR | Zbl

[10] Lakaev S. N., Shermatov M. Kh., “O spektre gamiltoniana odnoi sistemy trekh kvantovykh chastits na reshetke”, UMN, 54:6 (1999), 165–166 | DOI | MR | Zbl

[11] Dell'Antonio G. F., Muminov Z. I., Shermatova Y. M., On the number of eigenvalues of a model operator related to a system of three-particles on lattices, J. Phys. A: Math. Theor., 44, 2011, 7 pp. | DOI | MR | Zbl

[12] Muminov M. E., “O konechnosti diskretnogo spektra operatora Shrëdingera trekh chastits na reshetke”, Teoret. i matem. fizika, 154:2 (2008), 363–371 | DOI | MR | Zbl

[13] Albeverio S., Lakaev S. N., Muminov Z. I., “On the structure of the essential spectrum for the three-particle Schrödinger operators on lattices”, Math. Nachrichten, 280:7 (2007), 699–716 | DOI | MR | Zbl

[14] Muminov M. E., “O polozhitelnosti dvukhchastichnogo gamiltoniana na reshetke”, Teop. i matem. fizika, 153:3 (2007), 381–387 | DOI | MR | Zbl

[15] Birman M. Sh., Solomyak M. Z., Spektralnaya teoriya samosopryazhennykh operatorov v gilbertovom prostranstve, Ucheb. posobie, Izd-vo Leningradsk. un-ta, L., 1980 | MR