On finiteness of discrete spectrum of three-particle Schr\"odinger operator on a~lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 27-35
Voir la notice de l'article provenant de la source Math-Net.Ru
On three-dimensional lattice we consider a system of three quantum particles (two of them are identical (fermions) and the third one is of another nature) that interact with the help of paired short-range potentials of attraction. We prove the finiteness of a number of bound states of respective Schrödinger operator in a case when potentials satisfy some conditions and the zero is a regular point for two-particle subhamiltonian. We find a set of particles masses' values such that the Schrödinger operator may have only finite number of eigenvalues lying to the left from essential spectrum.
Keywords:
three-particle system on a lattice, Schrödinger operator, essential spectrum, discrete spectrum, Vineberg equation, virtual level.
@article{IVM_2016_1_a2,
author = {M. E. Muminov and E. M. Shermatova},
title = {On finiteness of discrete spectrum of three-particle {Schr\"odinger} operator on a~lattice},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {27--35},
publisher = {mathdoc},
number = {1},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_1_a2/}
}
TY - JOUR AU - M. E. Muminov AU - E. M. Shermatova TI - On finiteness of discrete spectrum of three-particle Schr\"odinger operator on a~lattice JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 27 EP - 35 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_1_a2/ LA - ru ID - IVM_2016_1_a2 ER -
%0 Journal Article %A M. E. Muminov %A E. M. Shermatova %T On finiteness of discrete spectrum of three-particle Schr\"odinger operator on a~lattice %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2016 %P 27-35 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2016_1_a2/ %G ru %F IVM_2016_1_a2
M. E. Muminov; E. M. Shermatova. On finiteness of discrete spectrum of three-particle Schr\"odinger operator on a~lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 27-35. http://geodesic.mathdoc.fr/item/IVM_2016_1_a2/