Geometry of tangent cone to $G$-space of nonpositive curvature with distinguished family of segments
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 3-14.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a construction of the tangent cone for Busemann $G$-space with distinguished family of segments with additional condition of Busemann curvature nonpositivity. We prove that the constructed cone has geometric properties analogous to the properties of the tangent cone of the standard $G$-space of nonpositive curvature. Earlier the tangent cone construction was used by the first author for proving H. Busemann's conjecture for $G$-spaces of nonpositive curvature stating that every such space is a topological manifold. The constructed tangent cone can be considered as a main tool for the generalization of this theorem to the presented class of spaces.
Keywords: Busemann $G$-space, distinguished family of segments family, nonpositive curvature, Busemann conjecture
Mots-clés : tangent cone.
@article{IVM_2016_1_a0,
     author = {P. D. Andreev and V. V. Starostina},
     title = {Geometry of tangent cone to $G$-space of nonpositive curvature with distinguished family of segments},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     publisher = {mathdoc},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_1_a0/}
}
TY  - JOUR
AU  - P. D. Andreev
AU  - V. V. Starostina
TI  - Geometry of tangent cone to $G$-space of nonpositive curvature with distinguished family of segments
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 3
EP  - 14
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_1_a0/
LA  - ru
ID  - IVM_2016_1_a0
ER  - 
%0 Journal Article
%A P. D. Andreev
%A V. V. Starostina
%T Geometry of tangent cone to $G$-space of nonpositive curvature with distinguished family of segments
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 3-14
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_1_a0/
%G ru
%F IVM_2016_1_a0
P. D. Andreev; V. V. Starostina. Geometry of tangent cone to $G$-space of nonpositive curvature with distinguished family of segments. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2016), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2016_1_a0/

[1] Andreev P. D., “Dokazatelstvo gipotezy Buzemana dlya $G$-prostranstv nepolozhitelnoi krivizny”, Algebra i analiz, 26:2 (2014), 1–20 | MR

[2] Buzeman G., Geometriya geodezicheskikh, Fizmatlit, M., 1962 | MR

[3] Busemann H., Phadke B. B., Spaces with distinguished geodesics, Dekker Inc., New York–Basel–Marcel, 1987 | MR | Zbl

[4] Busemann H., Phadke B. B., “Novel results in the geometry of geodesics”, Adv. Math., 101:2 (1993), 180–219 | DOI | MR | Zbl

[5] Sosov E. N., “Kasatelnoe prostranstvo po Buzemanu”, Izv. vuzov. Matem., 2005, no. 6, 71–75 | MR | Zbl

[6] Sosov E. N., “O metricheskom prostranstve vsekh $N$-setei v prostranstve nepolozhitelnoi krivizny po Buzemanu”, Izv. vuzov. Matem., 2006, no. 6, 74–77 | MR | Zbl

[7] Kleiner B., “Local structure of spaces with curvature bounded above”, Math. Z., 231:3 (1999), 409–456 | DOI | MR | Zbl

[8] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyut. issledovanii, M.–Izhevsk, 2004

[9] Bourbaki N., Topologie générale, Hermann, Paris, 1940 ; Burbaki N., Obschaya topologiya, Fizmatgiz, M., 1958 | MR | Zbl