Summability of Fourier series of almost-periodic functions on locally compact Abelian groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 82-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We generalize some results concerning the summability of Fourier series of continuous $2\pi$-periodic functions to almost-periodic functions on locally compact Abelian groups.
Keywords: almost-periodic functions, locally compact Abelian groups, Fourier series, dual group, characters.
@article{IVM_2016_12_a9,
     author = {D. K. Ugulava},
     title = {Summability of {Fourier} series of almost-periodic functions on locally compact {Abelian} groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {82--95},
     publisher = {mathdoc},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_12_a9/}
}
TY  - JOUR
AU  - D. K. Ugulava
TI  - Summability of Fourier series of almost-periodic functions on locally compact Abelian groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 82
EP  - 95
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_12_a9/
LA  - ru
ID  - IVM_2016_12_a9
ER  - 
%0 Journal Article
%A D. K. Ugulava
%T Summability of Fourier series of almost-periodic functions on locally compact Abelian groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 82-95
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_12_a9/
%G ru
%F IVM_2016_12_a9
D. K. Ugulava. Summability of Fourier series of almost-periodic functions on locally compact Abelian groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 82-95. http://geodesic.mathdoc.fr/item/IVM_2016_12_a9/

[1] Levitan B. M., Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953

[2] Ugulava D., “On the approximation of functions on locally compact Abelian groups”, Georgian Math. J., 6:4 (1999), 379–399 | DOI | MR

[3] Ugulava D., “Approximation of functions on locally compact Abelian groups”, Georgian Math. J., 19:1 (2012), 181–193 | DOI | MR | Zbl

[4] Ugulava D., “On some approximation properties of a generalized Fejer integral”, Bull. of the Georgian Nat. Acad. of Sciences, 6:1 (2012), 32–38 | MR | Zbl

[5] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 2, Struktura i analiz kompaktnykh grupp. Analiz na lokalno kompaktnykh abelevykh gruppakh, Mir, M., 1975

[6] fon Neiman Dzhon, Pochti-periodicheskie funktsii na gruppe, Izbrannye tr. po funkts. analizu, Nauka, M., 1987

[7] Struble R. A., “Almost periodic functions on locally compact groups”, Proc. Nat. Acad. Sci. USA, 39 (1952), 122–126 | DOI | MR

[8] Yoshi Milan A., Podhye S. M., “On the equivalence of several definitions of almost periodic functions on locally compact groups”, Global Journal of Math. Sci. Theory and Practical, 2:3 (2010), 143–149

[9] Bredikhina E. A., “Nekotorye voprosy summirovaniya ryadov Fure pochti-periodicheskikh funktsii”, UMN, 15:5 (1960), 143–150 | MR | Zbl

[10] Vladimirov V. S., Volovich I. V., Zelenov E. I., $p$-adichnyi analiz i matematichesnaya fizika, Fizmatlit, M., 1994

[11] Mackey G., “Laplace transform for locally compact Abelian groups”, Proc. Nat. Acad. Sci. USA, 34 (1948), 158–162 | DOI | MR

[12] Ugulava D., “Ob odnom analoge teoremy Peli–Vinera”, Izv. vuzov. Matem., 2002, no. 8, 65–71 | MR | Zbl

[13] Bor G., Pochti-periodicheskie funktsii, OGIZ, M., 1934

[14] Levitan B. M., Zhikov V. V., Pochti-periodicheskie funktsii i differentsialnye uravneniya, MGU, M., 1978 | MR

[15] Yudin I. F., “Priblizhenie funktsii mnogikh peremennykh ikh summami Feiera”, Matem. zametki, 13:6 (1973), 817–828 | MR | Zbl