On outer elements of noncommutative Orlicz--Hardy spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 19-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal M$ be a von Neumann algebra equipped with a faithful normal tracial state $\tau$, $\mathcal A$ be subdiagonal subalgebra of $\mathcal M$, and let $\Phi$ be a growth function. We transfer the results of Studia Math. 217 (3), 265–287 (2013) to the noncommutative $H^\Phi(\mathcal A)$ space case.
Keywords: growth function, noncommutative Orlicz spaces, noncommutative Orlicz–Hardy space
Mots-clés : outer element.
@article{IVM_2016_12_a2,
     author = {T. N. Bekzhan and K. N. Ospanov},
     title = {On outer elements of noncommutative {Orlicz--Hardy} spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {19--25},
     publisher = {mathdoc},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_12_a2/}
}
TY  - JOUR
AU  - T. N. Bekzhan
AU  - K. N. Ospanov
TI  - On outer elements of noncommutative Orlicz--Hardy spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 19
EP  - 25
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_12_a2/
LA  - ru
ID  - IVM_2016_12_a2
ER  - 
%0 Journal Article
%A T. N. Bekzhan
%A K. N. Ospanov
%T On outer elements of noncommutative Orlicz--Hardy spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 19-25
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_12_a2/
%G ru
%F IVM_2016_12_a2
T. N. Bekzhan; K. N. Ospanov. On outer elements of noncommutative Orlicz--Hardy spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 19-25. http://geodesic.mathdoc.fr/item/IVM_2016_12_a2/

[1] Arveson W. B., “Analyticity in operator algebras”, Amer. J. Math., 89:3 (1967), 578–642 | DOI | MR | Zbl

[2] Blecher D. P., Labuschagne L. E., “Applications of the Fuglede–Kadison determinant: Szegö's theorem and outers for noncommutative $H^p$”, Trans. Amer. Math. Soc., 360:11 (2008), 6131–6147 | DOI | MR | Zbl

[3] Bekjan T. N., Xu Q., “Riesz and Szegö type factorizations for noncommutative Hardy spaces”, J. Oper. Theory, 62:1 (2009), 215–231 | MR | Zbl

[4] Blecher D. P., Labuschagne L. E., “Outers for noncommutative $H^p$ revisited”, Studia Math., 217:3 (2013), 265–287 | DOI | MR | Zbl

[5] Abdurexit A., Bekjan T. N., “Noncommutative Orlicz–Hardy spaces associated with growth functions”, J. Math. Anal. Appl., 420:1 (2014), 824–834 | DOI | MR | Zbl

[6] Abdurexit A., Bekjan T. N., “Noncommutative Orlicz modular spaces associated with growth functions”, Banach J. Math. Anal., 9:4 (2015), 115–125 | DOI | MR | Zbl

[7] Bikchentaev A. M., “On noncommutative function spaces”, Selected Papers in $K$-theory, Amer. Math. Soc. Transl. (2), 154, 1992, 179–187 | DOI

[8] Marsalli M., West G., “Noncommutative $H^p$-spaces”, J. Oper. Theory, 40:2 (1998), 339–355 | MR | Zbl

[9] Exel R., “Maximal subdiagonal algebras”, Amer. J. Math., 110:4 (1988), 775–782 | DOI | MR | Zbl

[10] Fack T., Kosaki H., “Generalized $s$-numbers of $\tau $-measure operators”, Pac. J. Math., 123:2 (1986), 269–300 | DOI | MR | Zbl