Universal computable enumerations of finite classes of families of total functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 96-100.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we introduce the notion of a computable enumeration of a class of families. We prove a criteria for the existence of uiversal computable enumerations of finite classes of computable families of total functions. In particular, we show that there is a finite computable class of families of total functions without universal computable enumerations.
Keywords: computable enumeration, universal enumeration, class of families, arithmetical enumeration.
@article{IVM_2016_12_a10,
     author = {M. Kh. Faizrakhmanov},
     title = {Universal computable enumerations of finite classes of families of total functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {96--100},
     publisher = {mathdoc},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_12_a10/}
}
TY  - JOUR
AU  - M. Kh. Faizrakhmanov
TI  - Universal computable enumerations of finite classes of families of total functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 96
EP  - 100
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_12_a10/
LA  - ru
ID  - IVM_2016_12_a10
ER  - 
%0 Journal Article
%A M. Kh. Faizrakhmanov
%T Universal computable enumerations of finite classes of families of total functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 96-100
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_12_a10/
%G ru
%F IVM_2016_12_a10
M. Kh. Faizrakhmanov. Universal computable enumerations of finite classes of families of total functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 96-100. http://geodesic.mathdoc.fr/item/IVM_2016_12_a10/

[1] Goncharov S. S., Sorbi A., “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl

[2] Podzorov S. Yu., “Nachalnye segmenty v polureshetkakh Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Algebra i logika, 42:2 (2003), 211–226 | MR | Zbl

[3] Badaev S. A., Goncharov S. S., Sorbi A., “Completeness and universality of arithmetical numberings”, Comp. and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publ., New York, 2003, 11–44 | DOI | MR

[4] Badaev S. A., Goncharov S. S., Sorbi A., “Ob elementarnykh teoriyakh polureshetok Rodzhersa”, Algebra i logika, 44:3 (2005), 261–268 | MR | Zbl

[5] Badaev S. A., Goncharov S. S., “Obobschenno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569 | MR

[6] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977 | MR

[7] Kalimullin I. Sh., Faizrakhmanov M. Kh., “Ierarkhiya klassov semeistv i $n$-nizkie stepeni”, Algebra i logika, 54:4 (2015), 536–541 | MR | Zbl

[8] Faizrahmanov M., Kalimullin I., “The enumeration spectrum hierarchy of $n$-families”, Math. Log. Quat., 2016 (to appear)

[9] Faizrahmanov M., Kalimullin I., “The enumeration spectrum hierarchy of $\alpha$-families and Low$_\alpha$ degrees”, J. Univ. Comp. Sci., 2016 (to appear)