@article{IVM_2016_12_a10,
author = {M. Kh. Faizrakhmanov},
title = {Universal computable enumerations of finite classes of families of total functions},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {96--100},
year = {2016},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_12_a10/}
}
M. Kh. Faizrakhmanov. Universal computable enumerations of finite classes of families of total functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 96-100. http://geodesic.mathdoc.fr/item/IVM_2016_12_a10/
[1] Goncharov S. S., Sorbi A., “Obobschenno vychislimye numeratsii i netrivialnye polureshetki Rodzhersa”, Algebra i logika, 36:6 (1997), 621–641 | MR | Zbl
[2] Podzorov S. Yu., “Nachalnye segmenty v polureshetkakh Rodzhersa $\Sigma^0_n$-vychislimykh numeratsii”, Algebra i logika, 42:2 (2003), 211–226 | MR | Zbl
[3] Badaev S. A., Goncharov S. S., Sorbi A., “Completeness and universality of arithmetical numberings”, Comp. and models, eds. S. B. Cooper, S. S. Goncharov, Kluwer Academic/Plenum Publ., New York, 2003, 11–44 | DOI | MR
[4] Badaev S. A., Goncharov S. S., Sorbi A., “Ob elementarnykh teoriyakh polureshetok Rodzhersa”, Algebra i logika, 44:3 (2005), 261–268 | MR | Zbl
[5] Badaev S. A., Goncharov S. S., “Obobschenno vychislimye universalnye numeratsii”, Algebra i logika, 53:5 (2014), 555–569 | MR
[6] Ershov Yu. L., Teoriya numeratsii, Nauka, M., 1977 | MR
[7] Kalimullin I. Sh., Faizrakhmanov M. Kh., “Ierarkhiya klassov semeistv i $n$-nizkie stepeni”, Algebra i logika, 54:4 (2015), 536–541 | MR | Zbl
[8] Faizrahmanov M., Kalimullin I., “The enumeration spectrum hierarchy of $n$-families”, Math. Log. Quat., 2016 (to appear)
[9] Faizrahmanov M., Kalimullin I., “The enumeration spectrum hierarchy of $\alpha$-families and Low$_\alpha$ degrees”, J. Univ. Comp. Sci., 2016 (to appear)