On a~method of evaluation of attraction domain for fixed point of nonlinear point mapping of arbitrary dimension
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 12-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we describe the method of attraction domain evaluation for equilibrium states of nonlinear discrete dynamic system based on Lyapunov functions method. Attraction domain evaluation size is equilibrium state neighborhood where the first difference of Lyapunov function is negative. Lyapunov function is chosen as positive quadratic form for which the negativity of its first difference by virtue of linearized system is guaranteed with given supply. We propose the method of attraction domain extension.
Keywords: discrete dynamic system, macro-structure of state space, Lyapunov function method.
@article{IVM_2016_12_a1,
     author = {O. G. Antonovskaya and V. I. Goryunov},
     title = {On a~method of evaluation of attraction domain for fixed point of nonlinear point mapping of arbitrary dimension},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {12--18},
     publisher = {mathdoc},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_12_a1/}
}
TY  - JOUR
AU  - O. G. Antonovskaya
AU  - V. I. Goryunov
TI  - On a~method of evaluation of attraction domain for fixed point of nonlinear point mapping of arbitrary dimension
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 12
EP  - 18
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_12_a1/
LA  - ru
ID  - IVM_2016_12_a1
ER  - 
%0 Journal Article
%A O. G. Antonovskaya
%A V. I. Goryunov
%T On a~method of evaluation of attraction domain for fixed point of nonlinear point mapping of arbitrary dimension
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 12-18
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_12_a1/
%G ru
%F IVM_2016_12_a1
O. G. Antonovskaya; V. I. Goryunov. On a~method of evaluation of attraction domain for fixed point of nonlinear point mapping of arbitrary dimension. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 12-18. http://geodesic.mathdoc.fr/item/IVM_2016_12_a1/

[1] Andronov A. A., Vitt A. A., Khaikin S. E., Teoriya kolebanii, Fizmatgiz, M., 1959

[2] Kosyakin A. A., Shamrikov B. M., Kolebaniya v tsifrovykh avtomaticheskikh sistemakh, Nauka, M., 1981

[3] Bromberg P. V., Ustoichivost i avtokolebaniya impulsnykh sistem regulirovaniya, Oborongiz, M., 1953

[4] Neimark Yu. I., Metod tochechnykh otobrazhenii v teorii nelineinykh kolebanii, Nauka, M., 1972 | MR

[5] Khalanai A., Veksler D., Kachestvennaya teoriya impulsnykh sistem, Mir, M., 1971 | MR

[6] Kapranov M. V., Tomashevskii A. I., Regulyarnaya i khaoticheskaya dinamika nelineinykh sistem s diskretnym vremenem, Izd. Dom MEI, M., 2009

[7] Gukenkheimer Dzh., Kholms F., Nelineinye kolebaniya, dinamicheskie sistemy i bifurkatsii, In-t kompyuternykh issledov., M.–Izhevsk, 2002

[8] Morozov A. D., Dragunov T. N., Vizualizatsiya i analiz invariantnykh mnozhestv dinamicheskikh sistem, In-t kompyuternykh issledov., M.–Izhevsk, 2003

[9] Kuntsevich V. M., Chekhovoi Yu. N., Nelineinye sistemy upravleniya s chastotno-imulsnoi modulyatsiei, Tekhnika, Kiev, 1970

[10] Neimark Yu. I., “Metod tochechnykh preobrazovanii v teorii nelineinykh kolebanii. I”, Izv. vuzov. Radiofizika, 1:1 (1958), 41–66

[11] Antonovskaya O. G., “O postroenii kvadratichnoi funktsii Lyapunova s zadannymi svoistvami”, Differents. uravneniya, 49:9 (2013), 1220–1224 | MR | Zbl

[12] Antonovskaya O. G., “Postroenie kvadratichnykh funktsii Lyapunova, udovletvoryayuschikh zadannym ogranicheniyam, dlya nepreryvnykh i diskretnykh dinamicheskikh sistem”, Izv. vuzov. Matem., 2004, no. 2, 19–23 | MR | Zbl

[13] Antonovskaya O. G., “O maksimalnom ogranichenii znakootritsatelnosti pervoi proizvodnoi (pervoi raznosti) kvadratichnoi funktsii Lyapunova”, Differents. uravneniya, 39:11 (2003), 1562–1563 | MR | Zbl

[14] Antonovskaya O. G., Goryunov V. I., “O vybore parametrov kvadratichnoi funktsii Lyapunova pri reshenii dinamicheskikh zadach”, Vestn. Nizhegorodsk. gos. un-ta, 3:1 (2014), 103–106

[15] Antonovskaya O. G., Goryunov V. I., Lobashov N. I., “K analizu formy i dlitelnosti perekhodnykh protsessov pri pereklyucheniyakh sintezatora s delitelem chastoty i proportsionalno-integriruyuschim filtrom po diapazonu”, Dinamika sistem, Sb. nauchn. tr., Izd-vo Gorkovsk. un-ta, Gorkii, 1990, 59–72

[16] Goryunov V. I., Eruslanov V. N., Lobashov N. I., “Tekhnicheskaya polosa zakhvata odnokonturnogo sintezatora chastoty”, Tekhnika sredstv svyazi. Ser. Tekhnika radiosvyazi, 1990, no. 2, 88–94

[17] Kuntsevich V. M., Lychak M. M., Sintez sistem avtomaticheskogo upravleniya s pomoschyu funktsii Lyapunova, Nauka, M., 1977 | MR