On a~method of construction of asymptotic decompositions of bisingular perturbed problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 3-11.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose an analog of the method of boundary functions for constructing uniform asymptotic expansions of solutions to bisingular perturbed problems. With the use of this method we construct uniform asymptotic expansions of solutions to the Dirichlet problem for bisingular perturbed ordinary differential equations and second order elliptic equations. Applying the maximum principle, we obtain estimates for the remainder terms.
Keywords: asymptotic expansion, Dirichlet problem, Airy function, boundary functions.
@article{IVM_2016_12_a0,
     author = {K. Alymkulov and D. A. Tursunov},
     title = {On a~method of construction of asymptotic decompositions of bisingular perturbed problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     publisher = {mathdoc},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_12_a0/}
}
TY  - JOUR
AU  - K. Alymkulov
AU  - D. A. Tursunov
TI  - On a~method of construction of asymptotic decompositions of bisingular perturbed problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 3
EP  - 11
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_12_a0/
LA  - ru
ID  - IVM_2016_12_a0
ER  - 
%0 Journal Article
%A K. Alymkulov
%A D. A. Tursunov
%T On a~method of construction of asymptotic decompositions of bisingular perturbed problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 3-11
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_12_a0/
%G ru
%F IVM_2016_12_a0
K. Alymkulov; D. A. Tursunov. On a~method of construction of asymptotic decompositions of bisingular perturbed problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2016), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2016_12_a0/

[1] Ilin A. M., Soglasovanie asimptoticheskikh razlozhenii reshenii kraevykh zadach, Nauka, M., 1989 | MR

[2] Ilin A. M., Danilin A. R., Asimptoticheskie metody v analize, Fizmatlit, M., 2009

[3] Alymkulov K., “Method of boundary layer function to solve the boundary value problem for a singularly perturbed differential equation of the order two with a turning point”, Universal J. Appl. Math., 2:3 (2014), 119–124

[4] Alymkulov K., Asylbekov T. D., Dolbeeva S. F., “Obobschenie metoda pogranfunktsii dlya resheniya kraevoi zadachi dlya bisingulyarno vozmuschennogo differentsialnogo uravneniya vtorogo poryadka”, Matem. zametki, 94:4 (2013), 483–487 | DOI | MR | Zbl

[5] Alymkulov K., Khalmatov A. A., “Metod pogranfunktsii dlya resheniya modelnogo uravneniya Laitkhilla s regulyarnoi osoboi tochkoi”, Matem. zametki, 92:6 (2012), 819–824 | DOI | MR | Zbl

[6] Tursunov D. A., “Asimptoticheskoe razlozhenie resheniya singulyarno vozmuschennogo obyknovennogo differentsialnogo uravneniya vtorogo poryadka s dvumya tochkami povorota”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 2013, no. 1(21), 34–40

[7] Bobochko V. N., “Ravnomernaya asimptotika resheniya neodnorodnoi sistemy dvukh differentsialnykh uravnenii s tochkoi povorota”, Izv. vuzov. Matem., 2006, no. 5, 8–18 | MR | Zbl

[8] Bobochko V. N., “Nestabilnaya differentsialnaya tochka povorota v teorii singulyarnykh vozmuschenii”, Izv. vuzov. Matem., 2005, no. 4, 8–17 | MR | Zbl

[9] Gilbarg D., Trudinger N., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR

[10] Tursunov D. A., “Asimptoticheskoe razlozhenie resheniya bisingulyarno vozmuschennogo ellipticheskogo uravneniya”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 2013, no. 6(26), 37–44

[11] Tursunov D. A., “Asimptotika resheniya bisingulyarno vozmuschennogo ellipticheskogo uravneniya. Sluchai osoboi tochki na granitse”, Izv. Tomsk. politekh. un-ta, 324:2 (2014), 31–35

[12] Tursunov D. A., Belekov K. J., “Asymptotic expansion of the solution of the Dirichlet problem for bisingular perturbed elliptic equations in domains with smooth boundaries”, Proceedings of V Congress of the Turkic World Mathematicians (Kyrgyzstan, Bulan-Sogottu, June 5–7, 2014), ed. Academician Altay Borubaev, Kyrgyz Math. Soc., Bishkek, 2014, 143–147