An optimal control problem by parabolic equation in the class of smooth controls
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 86-90.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an optimal control problem by parabolic equation with differential constraint on the boundary. The problem is considered in the class of smooth controls. Functions of controls are satisfied by constraints in each point. Such problems describe the processes of mass transfer to the column of reverse mixing. We obtain a necessary optimality condition for the optimal control problem. We propose the method for improvement of admissible controls and carry out the numerical experiment.
Mots-clés : parabolic equation
Keywords: smooth control, necessary optimality condition, numerical method.
@article{IVM_2016_11_a7,
     author = {A. V. Arguchintsev and V. P. Poplevko},
     title = {An optimal control problem by parabolic equation in the class of smooth controls},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--90},
     publisher = {mathdoc},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_11_a7/}
}
TY  - JOUR
AU  - A. V. Arguchintsev
AU  - V. P. Poplevko
TI  - An optimal control problem by parabolic equation in the class of smooth controls
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 86
EP  - 90
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_11_a7/
LA  - ru
ID  - IVM_2016_11_a7
ER  - 
%0 Journal Article
%A A. V. Arguchintsev
%A V. P. Poplevko
%T An optimal control problem by parabolic equation in the class of smooth controls
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 86-90
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_11_a7/
%G ru
%F IVM_2016_11_a7
A. V. Arguchintsev; V. P. Poplevko. An optimal control problem by parabolic equation in the class of smooth controls. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 86-90. http://geodesic.mathdoc.fr/item/IVM_2016_11_a7/

[1] Demidenko N. D., Upravlyaemye raspredelennye sistemy, Nauka, Novosibirsk, 1999 | MR

[2] Vasilev F. P., Metody optimizatsii, Faktorial Press, M., 2002

[3] Arguchintsev A. V., Optimalnoe upravlenie giperbolicheskimi sistemami, Fizmatlit, M., 2007