Asymptotic estimates of $p$-variational and $L^p$-moduli of continuity of functions of certain classes
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 68-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain sharp estimates for upper bound of $p$-variational or $L^p$-modulus of continuity on the classes of functions with given majorants of trigonometric best approximations or moduli of continuity. We also obtain the refined direct and inverse theorems of approximation in $p$-variational metric for conjugate function.
Keywords: functions of bounded $p$-variation, moduli of smoothness, best approximations, conjugate function.
Mots-clés : $L^p$
@article{IVM_2016_11_a5,
     author = {A. A. Tyuleneva},
     title = {Asymptotic estimates of $p$-variational and $L^p$-moduli of continuity of functions of certain classes},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {68--79},
     publisher = {mathdoc},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_11_a5/}
}
TY  - JOUR
AU  - A. A. Tyuleneva
TI  - Asymptotic estimates of $p$-variational and $L^p$-moduli of continuity of functions of certain classes
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 68
EP  - 79
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_11_a5/
LA  - ru
ID  - IVM_2016_11_a5
ER  - 
%0 Journal Article
%A A. A. Tyuleneva
%T Asymptotic estimates of $p$-variational and $L^p$-moduli of continuity of functions of certain classes
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 68-79
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_11_a5/
%G ru
%F IVM_2016_11_a5
A. A. Tyuleneva. Asymptotic estimates of $p$-variational and $L^p$-moduli of continuity of functions of certain classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 68-79. http://geodesic.mathdoc.fr/item/IVM_2016_11_a5/

[1] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. Phys., 3 (1924), 72–94 | DOI | Zbl

[2] Young L. C., “An inequality of the Hölder type, connected with Stielties integration”, Acta Math., 67 (1936), 251–282 | DOI | MR | Zbl

[3] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1965, no. 2, 171–187 | MR | Zbl

[4] Terekhin A. P., “Integralnye svoistva gladkosti periodicheskikh funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 2:3 (1967), 289–300 | MR | Zbl

[5] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Moskovsk. matem. o-va, 5, 1956, 483–522 | MR | Zbl

[6] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960

[7] Timan M. F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_p$”, Matem. sb., 46(88):1 (1958), 125–132 | MR | Zbl

[8] Timan M. F., “O teoreme Dzheksona v prostranstve $L_p$”, Ukr. matem. zhurnal, 18:1 (1966), 134–137 | MR | Zbl

[9] Volosivets S. S., “Utochnennye teoremy teorii priblizhenii v prostranstve $p$-absolyutno nepreryvnykh funktsii”, Matem. zametki, 80:5 (2006), 701–711 | DOI | MR | Zbl

[10] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl

[11] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965 | MR

[12] Konyushkov A. A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44(86):1 (1958), 53–84 | MR | Zbl

[13] Khardi G., Littlvud Dzh., Polia G., Neravenstva, In. lit., M., 1948

[14] Leindler L., “Inequalities of Hardy–Littlewood type”, Anal. Math., 2:2 (1976), 117–123 | DOI | MR | Zbl

[15] Timan M. F., “Orthonormal systems satisfying an inequality of S. M. Nikol'ski”, Anal. Math., 4:1 (1978), 75–82 | DOI | MR | Zbl

[16] Golubov B. I., “O nailuchshem priblizhenii $p$-absolyutno nepreryvnykh funktsii”, Nekotorye voprosy teorii funktsii i funktsionalnogo analiza, v. 4, Izd-vo Tbilissk. un-ta, Tbilisi, 1988, 85–99

[17] Stechkin S. B., “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 20:2 (1956), 197–206 | MR | Zbl

[18] Ilyasov N. A., “Priblizhenie periodicheskikh funktsii srednimi Zigmunda”, Matem. zametki, 39:3 (1986), 367–382 | MR | Zbl

[19] Volosivets S. S., “Polinomy nailuchshego priblizheniya i sootnosheniya mezhdu modulyami nepreryvnosti v prostranstvakh funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1996, no. 9, 21–26 | MR | Zbl

[20] Volosivets S. S., “Asimptoticheskie kharakteristiki odnogo kompakta gladkikh funktsii v prostranstve funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 57:2 (1995), 214–227 | MR | Zbl