Mots-clés : $L^p$
@article{IVM_2016_11_a5,
author = {A. A. Tyuleneva},
title = {Asymptotic estimates of $p$-variational and $L^p$-moduli of continuity of functions of certain classes},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {68--79},
year = {2016},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_11_a5/}
}
TY - JOUR AU - A. A. Tyuleneva TI - Asymptotic estimates of $p$-variational and $L^p$-moduli of continuity of functions of certain classes JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 68 EP - 79 IS - 11 UR - http://geodesic.mathdoc.fr/item/IVM_2016_11_a5/ LA - ru ID - IVM_2016_11_a5 ER -
A. A. Tyuleneva. Asymptotic estimates of $p$-variational and $L^p$-moduli of continuity of functions of certain classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 68-79. http://geodesic.mathdoc.fr/item/IVM_2016_11_a5/
[1] Wiener N., “The quadratic variation of a function and its Fourier coefficients”, J. Math. Phys., 3 (1924), 72–94 | DOI | Zbl
[2] Young L. C., “An inequality of the Hölder type, connected with Stielties integration”, Acta Math., 67 (1936), 251–282 | DOI | MR | Zbl
[3] Terekhin A. P., “Priblizhenie funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1965, no. 2, 171–187 | MR | Zbl
[4] Terekhin A. P., “Integralnye svoistva gladkosti periodicheskikh funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 2:3 (1967), 289–300 | MR | Zbl
[5] Bari N. K., Stechkin S. B., “Nailuchshie priblizheniya i differentsialnye svoistva dvukh sopryazhennykh funktsii”, Tr. Moskovsk. matem. o-va, 5, 1956, 483–522 | MR | Zbl
[6] Timan A. F., Teoriya priblizheniya funktsii deistvitelnogo peremennogo, Fizmatgiz, M., 1960
[7] Timan M. F., “Obratnye teoremy konstruktivnoi teorii funktsii v prostranstvakh $L_p$”, Matem. sb., 46(88):1 (1958), 125–132 | MR | Zbl
[8] Timan M. F., “O teoreme Dzheksona v prostranstve $L_p$”, Ukr. matem. zhurnal, 18:1 (1966), 134–137 | MR | Zbl
[9] Volosivets S. S., “Utochnennye teoremy teorii priblizhenii v prostranstve $p$-absolyutno nepreryvnykh funktsii”, Matem. zametki, 80:5 (2006), 701–711 | DOI | MR | Zbl
[10] Tikhonov S., “Trigonometric series with general monotone coefficients”, J. Math. Anal. Appl., 326:1 (2007), 721–735 | DOI | MR | Zbl
[11] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965 | MR
[12] Konyushkov A. A., “Nailuchshie priblizheniya trigonometricheskimi polinomami i koeffitsienty Fure”, Matem. sb., 44(86):1 (1958), 53–84 | MR | Zbl
[13] Khardi G., Littlvud Dzh., Polia G., Neravenstva, In. lit., M., 1948
[14] Leindler L., “Inequalities of Hardy–Littlewood type”, Anal. Math., 2:2 (1976), 117–123 | DOI | MR | Zbl
[15] Timan M. F., “Orthonormal systems satisfying an inequality of S. M. Nikol'ski”, Anal. Math., 4:1 (1978), 75–82 | DOI | MR | Zbl
[16] Golubov B. I., “O nailuchshem priblizhenii $p$-absolyutno nepreryvnykh funktsii”, Nekotorye voprosy teorii funktsii i funktsionalnogo analiza, v. 4, Izd-vo Tbilissk. un-ta, Tbilisi, 1988, 85–99
[17] Stechkin S. B., “O nailuchshem priblizhenii sopryazhennykh funktsii trigonometricheskimi polinomami”, Izv. AN SSSR. Ser. matem., 20:2 (1956), 197–206 | MR | Zbl
[18] Ilyasov N. A., “Priblizhenie periodicheskikh funktsii srednimi Zigmunda”, Matem. zametki, 39:3 (1986), 367–382 | MR | Zbl
[19] Volosivets S. S., “Polinomy nailuchshego priblizheniya i sootnosheniya mezhdu modulyami nepreryvnosti v prostranstvakh funktsii ogranichennoi $p$-variatsii”, Izv. vuzov. Matem., 1996, no. 9, 21–26 | MR | Zbl
[20] Volosivets S. S., “Asimptoticheskie kharakteristiki odnogo kompakta gladkikh funktsii v prostranstve funktsii ogranichennoi $p$-variatsii”, Matem. zametki, 57:2 (1995), 214–227 | MR | Zbl