Regularized continuous analog of the Newton method for monotone equations in the Hilbert space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 53-67
Voir la notice de l'article provenant de la source Math-Net.Ru
We construct regularized continuous analog of the Newton method in the Hilbert space for nonlinear equation with Frechét differentiable and monotone operator. We obtain sufficient conditions of its strong convergence to normal solution of the given equation under approximate assignment of an operator and right-hand of an equation.
Keywords:
Hilbert space, monotone operator, Newton method, continuous method
Mots-clés : convergence.
Mots-clés : convergence.
@article{IVM_2016_11_a4,
author = {I. P. Ryazantseva},
title = {Regularized continuous analog of the {Newton} method for monotone equations in the {Hilbert} space},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {53--67},
publisher = {mathdoc},
number = {11},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_11_a4/}
}
TY - JOUR AU - I. P. Ryazantseva TI - Regularized continuous analog of the Newton method for monotone equations in the Hilbert space JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 53 EP - 67 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_11_a4/ LA - ru ID - IVM_2016_11_a4 ER -
I. P. Ryazantseva. Regularized continuous analog of the Newton method for monotone equations in the Hilbert space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 53-67. http://geodesic.mathdoc.fr/item/IVM_2016_11_a4/