Regularized continuous analog of the Newton method for monotone equations in the Hilbert space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 53-67

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct regularized continuous analog of the Newton method in the Hilbert space for nonlinear equation with Frechét differentiable and monotone operator. We obtain sufficient conditions of its strong convergence to normal solution of the given equation under approximate assignment of an operator and right-hand of an equation.
Keywords: Hilbert space, monotone operator, Newton method, continuous method
Mots-clés : convergence.
@article{IVM_2016_11_a4,
     author = {I. P. Ryazantseva},
     title = {Regularized continuous analog of the {Newton} method for monotone equations in the {Hilbert} space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--67},
     publisher = {mathdoc},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_11_a4/}
}
TY  - JOUR
AU  - I. P. Ryazantseva
TI  - Regularized continuous analog of the Newton method for monotone equations in the Hilbert space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 53
EP  - 67
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_11_a4/
LA  - ru
ID  - IVM_2016_11_a4
ER  - 
%0 Journal Article
%A I. P. Ryazantseva
%T Regularized continuous analog of the Newton method for monotone equations in the Hilbert space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 53-67
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_11_a4/
%G ru
%F IVM_2016_11_a4
I. P. Ryazantseva. Regularized continuous analog of the Newton method for monotone equations in the Hilbert space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2016), pp. 53-67. http://geodesic.mathdoc.fr/item/IVM_2016_11_a4/