Solvability of thermoviscoelastic problem for Leray alpha-model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 70-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

We investigate solvability problem (in a weak sense) for one initial boundary-value problem describing alpha-Leray model with viscosity depending on a temperature.
Keywords: weak solutions, existence theorems, alpha-Leray model.
@article{IVM_2016_10_a8,
     author = {A. V. Zvyagin},
     title = {Solvability of thermoviscoelastic problem for {Leray} alpha-model},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {70--75},
     publisher = {mathdoc},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_10_a8/}
}
TY  - JOUR
AU  - A. V. Zvyagin
TI  - Solvability of thermoviscoelastic problem for Leray alpha-model
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 70
EP  - 75
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_10_a8/
LA  - ru
ID  - IVM_2016_10_a8
ER  - 
%0 Journal Article
%A A. V. Zvyagin
%T Solvability of thermoviscoelastic problem for Leray alpha-model
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 70-75
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_10_a8/
%G ru
%F IVM_2016_10_a8
A. V. Zvyagin. Solvability of thermoviscoelastic problem for Leray alpha-model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 70-75. http://geodesic.mathdoc.fr/item/IVM_2016_10_a8/

[1] Leray J., “Essai sur le mouvement d'un fluide visqueux emplissant l'espace”, Acta Math., 63 (1934), 193–248 | DOI | MR | Zbl

[2] Foias C., Holm D. D., Titi E. S., “The three dimensional viscous Camassa–Holm equations, and their relation to the Navier–Stokes equations and turbulence theory”, J. Dynam. Diff. Equat., 14:1 (2002), 1–35 | DOI | MR | Zbl

[3] Antontsev S. N., Kazhikhov A. V., Monakhov V. N., Kraevye zadachi mekhaniki neodnorodnykh zhidkostei, Nauka, Novosibirsk, 1983

[4] Cheskidov A., Holm D. D., Olson E., Titi E. S., “On a Leray-$\alpha$ model of turbulence”, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461:2055 (2005), 629–649 | DOI | MR | Zbl

[5] Ilyin A. A., Lunasin E. M., Titi E. S., “A modified-Leray-$\alpha$ subgrid scale model of turbulence”, Nonlinearity, 19:4 (2006), 879–897 | DOI | MR | Zbl

[6] Zvyagin V. G., Orlov V. P., “On certain mathematical models in continuum thermomechanics”, J. Fixed Point Theory and Appl., 15:1 (2014), 3–47 | DOI | MR | Zbl

[7] Zvyagin V. G., Orlov V. P., “Ob odnoi parabolicheskoi zadache dvizheniya termovyazkouprugikh sred”, Matem. zametki, 99:3 (2016), 465–469 | DOI | MR

[8] Zvyagin V. G., Orlov V. P., “Razreshimost v slabom smysle sistemy termovyazkouprugosti dlya modeli Dzheffrisa”, Izv. vuzov. Matem., 2013, no. 9, 64–69 | MR | Zbl

[9] Zvyagin A. V., Orlov V. P., “Razreshimost zadachi termovyazkouprugosti dlya odnoi modeli Oskolkova”, Izv. vuzov. Matem., 2014, no. 9, 69–74 | MR | Zbl

[10] Zvyagin A. V., Orlov V. P., “Issledovanie razreshimosti zadachi termovyazkouprugosti dlya lineino uprugo-zapazdyvayuschei zhidkosti Foigta”, Matem. zametki, 97:5 (2015), 681–698 | DOI | MR | Zbl

[11] Fursikov A. V., Optimalnoe upravlenie raspredelennymi sistemami. Teoriya i prilozheniya, Nauchnaya kniga, Novosibirsk, 1999

[12] Simon J., “Compact sets in the space $L^p(0,T; B)$”, Ann. Mat. Pura Appl., 146 (1987), 65–96 | DOI | MR | Zbl