Tracking of solution to parabolic equation with memory for general class of controls
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 53-64
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a control problem for parabolic equation with memory. It consists in constructing an algorithm for finding a feedback control such that a solution to a given equation should track a solution to another equation generated by an unknown right-hand side. We propose two noise-resistant solution algorithms for this problem which are based on the method of extremal shift. The first algorithm is applicable in the case of continuous measurements of phase states, whereas the second one presumes discrete measurements.
Keywords:
systems with distributed parameters, retarded systems, control.
@article{IVM_2016_10_a6,
author = {P. G. Surkov},
title = {Tracking of solution to parabolic equation with memory for general class of controls},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {53--64},
publisher = {mathdoc},
number = {10},
year = {2016},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2016_10_a6/}
}
TY - JOUR AU - P. G. Surkov TI - Tracking of solution to parabolic equation with memory for general class of controls JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2016 SP - 53 EP - 64 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2016_10_a6/ LA - ru ID - IVM_2016_10_a6 ER -
P. G. Surkov. Tracking of solution to parabolic equation with memory for general class of controls. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 53-64. http://geodesic.mathdoc.fr/item/IVM_2016_10_a6/