On possibility of obtaining linear accuracy evaluation of approximate solutions to inverse problems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 29-35.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a concept of linear a priori estimate of the accuracy for approximate solutions to inverse problems with perturbed data. We establish that if the linear estimate is valid for a method of solving the inverse problem, then the inverse problem is well-posed according to Tikhonov. We also find conditions, which ensure the converse for the method of solving the inverse problem independent on the error levels of data. This method is well-known method of quasi-solutions by V. K. Ivanov. It provides for well-posed (according to Tikhonov) inverse problems the existence of linear estimates. If the error levels of data are known, a method of solving well-posed according to Tikhonov inverse problems is proposed. This method called the residual method on the correctness set (RMCS) ensures linear estimates for approximate solutions. We give an algorithm for finding linear estimates in the RMCS.
Keywords: inverse problems, linear a priori estimate of the accuracy, well-posedness according to Tikhonov.
@article{IVM_2016_10_a3,
     author = {A. S. Leonov},
     title = {On possibility of obtaining linear accuracy evaluation of approximate solutions to inverse problems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {29--35},
     publisher = {mathdoc},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_10_a3/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - On possibility of obtaining linear accuracy evaluation of approximate solutions to inverse problems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 29
EP  - 35
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_10_a3/
LA  - ru
ID  - IVM_2016_10_a3
ER  - 
%0 Journal Article
%A A. S. Leonov
%T On possibility of obtaining linear accuracy evaluation of approximate solutions to inverse problems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 29-35
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_10_a3/
%G ru
%F IVM_2016_10_a3
A. S. Leonov. On possibility of obtaining linear accuracy evaluation of approximate solutions to inverse problems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 29-35. http://geodesic.mathdoc.fr/item/IVM_2016_10_a3/

[1] Tikhonov A. N., Arsenin V. Ya., Metody resheniya nekorrektnykh zadach, Nauka, M., 1979 | MR

[2] Ivanov V. K., Vasin V. V., Tanana V. P., Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR

[3] Vainikko G. M., Veretennikov A. Yu., Iteratsionnye protsedury v nekorrektnykh zadachakh, Nauka, M., 1986 | MR

[4] Tanana V. P., Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[5] Tanana V. P., Rekant M. A., Yanchenko S. I., Optimizatsiya metodov resheniya operatornykh uravnenii, Izd-vo Uralsk. un-ta, Sverdlovsk, 1987 | MR

[6] Bakushinskii A. B., Goncharskii A. V., Iterativnye metody resheniya nekorrektnykh zadach, Nauka, M., 1989 | MR

[7] Engl H. W., Hanke M., Neubauer A., Regularization of inverse problems, Kluwer Academic Publ., Dordrecht, 1996 | MR | Zbl

[8] Bakushinskii A. B., Kokurin M. Yu., Iteratsionnye metody resheniya nekorrektnykh operatornykh uravnenii s gladkimi operatorami, Editorial URSS, M., 2002

[9] Bakushinsky A. B., Kokurin M. Yu., Iterative methods for approximate solution of inverse problems, Springer, Dordrecht, 2004 | MR | Zbl

[10] Morozov V. A., Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[11] Ilin V. A., Poznyak E. G., Osnovy matematicheskogo analiza, Nauka, M., 1967

[12] Tikhonov A. N., “Ob ustoichivosti obratnykh zadach”, DAN SSSR, 39:5 (1943), 195–198 | MR

[13] Leonov A. S., “Mozhet li apriornaya otsenka tochnosti priblizhennogo resheniya nekorrektnoi zadachi byt sravnimoi s oshibkoi dannykh?”, Zhurn. vychisl. matem. i matem. fiz., 54:4 (2014), 562–568 | DOI | Zbl

[14] Kokurin M. Yu., “Ob uslovno-korrektnykh i obobschenno-korrektnykh zadachakh”, Zhurn. vychisl. matem. i matem. fiz., 53:6 (2013), 857–866 | DOI | MR | Zbl

[15] Kokurin M. Yu., “Iterativno regulyarizovannye metody dlya neregulyarnykh nelineinykh operatornykh uravnenii s normalno razreshimoi proizvodnoi v reshenii”, Algoritmicheskii analiz neustoichivykh zadach, Tez. dokl. Vserossiisk. konf., posvyaschennoi pamyati V. K. Ivanova, 2014, 47–48

[16] Leonov A. S., Sorokin V. N., “O tochnosti opredeleniya parametrov golosovogo istochnika”, Akust. zhurn., 60:6 (2014), 656–662 | DOI