On the law of large numbers for compositions of independent random semigroups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 86-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study random linear operators in Banach spaces and random one-parameter semigroups of such operators. For compositions of independent random semigroups of linear operators in the Hilbert space we obtain sufficient conditions for fulfilment of the law of large numbers and give examples of its violation.
Keywords: law of large numbers, random map, random semigrop, Chernoff theorem.
@article{IVM_2016_10_a11,
     author = {V. Zh. Sakbaev},
     title = {On the law of large numbers for compositions of independent random semigroups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {86--91},
     publisher = {mathdoc},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2016_10_a11/}
}
TY  - JOUR
AU  - V. Zh. Sakbaev
TI  - On the law of large numbers for compositions of independent random semigroups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2016
SP  - 86
EP  - 91
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2016_10_a11/
LA  - ru
ID  - IVM_2016_10_a11
ER  - 
%0 Journal Article
%A V. Zh. Sakbaev
%T On the law of large numbers for compositions of independent random semigroups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2016
%P 86-91
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2016_10_a11/
%G ru
%F IVM_2016_10_a11
V. Zh. Sakbaev. On the law of large numbers for compositions of independent random semigroups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2016), pp. 86-91. http://geodesic.mathdoc.fr/item/IVM_2016_10_a11/

[1] Blank M. L., Ustoichivost i lokalizatsiya v khaoticheskoi dinamike, MTsNMO, M., 2001

[2] Grigorchuk R. I., “Ergodicheskie teoremy dlya deistviya svobodnoi gruppy i svobodnoi polugruppy”, Matem. zametki, 65:5 (1999), 779–783 | DOI | MR | Zbl

[3] Oseledets V. I., “Markovskie tsepi, kosye proizvedeniya i ergodicheskie teoremy dlya obschikh dinamicheskikh sistem”, TVP, 10:3 (1965), 551–557 | MR | Zbl

[4] Kakutani S., “Random ergodic theorem and Markov processes with a stable distribution”, Proc. of 2nd Berkeley Sympos. Math. Statist. and Prob., 1951, 247–261 | MR | Zbl

[5] Tutubalin V. N., “Nekotorye teoremy tipa usilennogo zakona bolshikh chisel”, TVP, 14:2 (1969), 319–326 | MR | Zbl

[6] Lëtchikov A. V., “Uslovnaya predelnaya teorema dlya proizvedenii sluchainykh matrits”, Matem. sb., 186:3 (1995), 65–84 | MR | Zbl

[7] Protasov V. Yu., “Invariantnye funktsii dlya pokazatelei Lyapunova sluchainykh matrits”, Matem. sb., 202:1 (2011), 105–132 | DOI | MR | Zbl

[8] Orlov Yu. N., Sakbaev V. Zh., Smolyanov O. G., “Formuly Feinmana kak metod usredneniya sluchainykh gamiltonianov”, Tr. MIAN, 285, 2014, 232–243 | MR | Zbl

[9] Efremova L. S., Sakbaev V. Zh., “Ponyatie vzryva mnozhestva reshenii differentsialnykh uravnenii i usrednenie sluchainykh polugrupp”, TMF, 185:2 (2015), 252–271 | DOI | MR | Zbl

[10] Orlov Yu. N., Sakbaev V. Zh., Smolyanov O. G., “Sluchainye neogranichennye operatory i formuly Feinmana”, Izv. RAN, 81:1 (2017) (to appear)

[11] Iosida K., Funktsionalnyi analiz, Mir, M., 1967 | MR

[12] Sakbaev V. Zh., “O zakone bolshikh chisel dlya kompozitsii nezavisimykh sluchainykh operatorov i sluchainykh polugrupp”, Tr. MFTI, 8:1 (2016), 140–152 | MR

[13] Sakbaev V. Zh., “Zadacha Koshi dlya lineinogo differentsialnogo uravneniya s vyrozhdeniem i usrednenie approksimiruyuschikh ee regulyarizatsii”, Sovremen. matem. Fundament. napravleniya, 43, 2012, 3–172 | MR

[14] Sekefalvi-Nad B., Foyash Ch., Garmonicheskii analiz operatorov, Mir, M., 1970