On Fredholm partial integro-differential equation of the third order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 74-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study single-valued solvability of the initial value problem for a nonlinear partial Fredholm integro-differential equation of the third order with degenerate kernel. First we modify a method of degenerate kernel of partial Fredholm integro-differential equation of the second kind to the case of Fredholm integro-differential equations of the third order. After solving the corresponding system of algebraic equations we obtain the Volterra integral equation of the second kind. Further we use the method of successive approximations combined with the method of contractive mappings.
Keywords: initial value problem, integro-differential equation, Fredholm equation with degenerate kernel, algebraic system of equations, single-valued solvability.
@article{IVM_2015_9_a8,
     author = {T. K. Yuldashev},
     title = {On {Fredholm} partial integro-differential equation of the third order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {74--79},
     publisher = {mathdoc},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_9_a8/}
}
TY  - JOUR
AU  - T. K. Yuldashev
TI  - On Fredholm partial integro-differential equation of the third order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 74
EP  - 79
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_9_a8/
LA  - ru
ID  - IVM_2015_9_a8
ER  - 
%0 Journal Article
%A T. K. Yuldashev
%T On Fredholm partial integro-differential equation of the third order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 74-79
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_9_a8/
%G ru
%F IVM_2015_9_a8
T. K. Yuldashev. On Fredholm partial integro-differential equation of the third order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 74-79. http://geodesic.mathdoc.fr/item/IVM_2015_9_a8/

[1] Algazin S. D., Kiiko I. A., Flatter plastin i obolochek, Nauka, M., 2006

[2] Shkhanukov M. X., “O nekotorykh kraevykh zadachakh dlya uravneniya tretego poryadka, voznikayuschikh pri modelirovanii filtratsii zhidkosti v poristykh sredakh”, Differents. uravneniya, 18:4 (1982), 689–699 | MR | Zbl

[3] Andreev A. A., Yakovleva Yu. O., “Kharakteristicheskaya zadacha dlya sistemy giperbolicheskikh differentsialnykh uravnenii tretego poryadka obschego vida s nekratnymi kharakteristikami”, Vestn. SamGTU. Seriya: Fiz.-matem. nauki, 2013, no. 1(30), 31–36 | DOI

[4] Zikirov O. S., “O zadache Dirikhle dlya giperbolicheskikh uravnenii tretego poryadka”, Izv. vuzov. Matem., 2014, no. 7, 63–71 | MR | Zbl

[5] Repin O. A., Kumykova S. K., “Zadacha so smescheniem dlya uravneniya tretego poryadka s razryvnymi koeffitsientami”, Vestn. SamGTU. Seriya: Fiz.-matem. nauki, 2012, no. 4(29), 17–25 | DOI

[6] Sabitov K. B., “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo tipa tretego poryadka”, Dokl. RAN, 427:5 (2009), 593–596 | Zbl

[7] Sabitov K. B., “Zadacha Dirikhle dlya uravneniya smeshannogo tipa tretego poryadka v pryamougolnoi oblasti”, Differents. uravneniya, 47:5 (2011), 705–713 | MR

[8] Sopuev A., Arkabaev N. K., “Zadachi sopryazheniya dlya lineinykh psevdoparabolicheskikh uravnenii tretego poryadka”, Vestn. TomGU. Matem. Mekhan., 2013, no. 1(21), 16–23

[9] Yuldashev T. K., “Obratnaya zadacha dlya odnogo nelineinogo integro-differentsialnogo uravneniya tretego poryadka”, Vestn. SamGU. Seriya estestvennonauchnaya, 2013, no. 9/1(110), 58–66

[10] Yuldashev T. K., “Obratnaya zadacha dlya odnogo integro-differentsialnogo uravneniya v chastnykh proizvodnykh tretego poryadka”, Vestn. SamGTU. Seriya: Fiz.-matem. nauki, 2014, no. 1(34), 56–65 | DOI