Linear conjugation problem for analytic functions in the weighted Hölder spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 56-61
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider the classical problem of linear conjugation for analytic functions on piecewise-smooth curve in the whole scale of weighted Hölder spaces and describe its solvability in dependence on a weight order.
Keywords:
linear conjugation, weight spaces, canonical function, resolvability conditions.
Mots-clés : Cauchy index
Mots-clés : Cauchy index
@article{IVM_2015_9_a5,
author = {G. N. Aver'yanov and A. P. Soldatov},
title = {Linear conjugation problem for analytic functions in the weighted {H\"older} spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {56--61},
year = {2015},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_9_a5/}
}
TY - JOUR AU - G. N. Aver'yanov AU - A. P. Soldatov TI - Linear conjugation problem for analytic functions in the weighted Hölder spaces JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 56 EP - 61 IS - 9 UR - http://geodesic.mathdoc.fr/item/IVM_2015_9_a5/ LA - ru ID - IVM_2015_9_a5 ER -
G. N. Aver'yanov; A. P. Soldatov. Linear conjugation problem for analytic functions in the weighted Hölder spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 56-61. http://geodesic.mathdoc.fr/item/IVM_2015_9_a5/
[1] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR
[2] Gakhov F. D., Kraevye zadachi, Fizmatgiz, M., 1963 | MR
[3] Soldatov A. P., Odnomepnye singulyapnye opepatopy i kpaevye zadachi teopii funktsii, Vyssh. shkola, M., 1991 | MR
[4] Soldatov A. P., “Obobschennyi integral tipa Koshi”, Diffepents. upavneniya, 27:2 (1991), 3–8 | Zbl
[5] Soldatov A. P., “Kpaevaya zadacha lineinogo soppyazheniya teopii funktsii”, Izv. AH SSSR. Sep. matem., 43:1 (1979), 184–202 | MR | Zbl