Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_9_a3, author = {S. E. Samokhvalov and E. B. Balakireva}, title = {Group-theoretic matching of the length principle and equality principle in geometry}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {31--45}, publisher = {mathdoc}, number = {9}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/} }
TY - JOUR AU - S. E. Samokhvalov AU - E. B. Balakireva TI - Group-theoretic matching of the length principle and equality principle in geometry JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 31 EP - 45 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/ LA - ru ID - IVM_2015_9_a3 ER -
%0 Journal Article %A S. E. Samokhvalov %A E. B. Balakireva %T Group-theoretic matching of the length principle and equality principle in geometry %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 31-45 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/ %G ru %F IVM_2015_9_a3
S. E. Samokhvalov; E. B. Balakireva. Group-theoretic matching of the length principle and equality principle in geometry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 31-45. http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/
[1] Riman B., O gipotezakh, lezhaschikh v osnovanii geometrii, Gostekhteoretizdat, M., 1956
[2] Klein F., Sravnitelnoe obozrenie noveishikh geometricheskikh issledovanii, “Erlangenskaya programma”, Gostekhteoretizdat, M., 1956
[3] Kartan E., Teoriya grupp i geometriya, Gostekhteoretizdat, M., 1956
[4] Zulanke R., Vintgen P., Differentsialnaya geometriya, Mir, M., 1975
[5] Sabinin L. V., “Metody neassotsiativnoi algebry v differentsialnoi geometrii”, Osnovy differentsialnoi geometrii, V 2-kh t., eds. Sh. Kobayasi, K. Nomidzu, Nauka, M., 1981
[6] Samokhvalov S. E., “Teoretiko-gruppovoe opisanie kalibrovochnykh polei”, Teor. i matem. fizika, 76:1 (1988), 66–77 | MR
[7] Samokhvalov S. E., “O zadanii svyaznostei v rassloeniyakh deistviem beskonechnykh grupp Li”, Ukr. matem. zhurn., 1991, no. 12, 1599–1603 | MR | Zbl
[8] Samokhvalov S. E., Reznyk K. O., “Cartan equation as the condition of the existence of an infinite group Lie theory and its applications in physics VI”, Bulg. J. Phys., 33:S2 (2006), 309–314 | Zbl
[9] Samokhvalov S. Є., “Teoretiko-grupovii opis rimanovikh prostoriv”, Ukr. matem. zhurn., 2003, no. 9, 1238–1248 | MR | Zbl
[10] Kartan E., Rimanova geometriya v ortogonalnom repere, Izd-vo MGU, M., 1960
[11] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[12] Samokhvalov S. Є., “Fundamentalna grupa prostoru Einshteina”, Mat. modelyuvannya, 2008, no. 2, 15–19