Group-theoretic matching of the length principle and equality principle in geometry
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 31-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with canonical deformed group of diffeomorphisms with a given length scale which describes the motion of the single scales in the Riemannian space. This allows to measure lengths of arbitrary curves, implementing length principle which is laid by B. Riemann in the basis of the geometry. We present the way of univocal extension of the given group to a group, which contains gauge rotations of vectors (parallel transports group) whose transformations leave unchanged the lengths of the vectors and corners between them. Thereby Klein's Erlanger Program – the principle of equality – is implemented for Riemannian spaces.
Keywords: Riemannian–Klein's antagonism, group of motions in the Riemannian space tangent bundle, canonical deformed group of diffeomorphisms.
@article{IVM_2015_9_a3,
     author = {S. E. Samokhvalov and E. B. Balakireva},
     title = {Group-theoretic matching of the length principle and equality principle in geometry},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--45},
     publisher = {mathdoc},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/}
}
TY  - JOUR
AU  - S. E. Samokhvalov
AU  - E. B. Balakireva
TI  - Group-theoretic matching of the length principle and equality principle in geometry
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 31
EP  - 45
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/
LA  - ru
ID  - IVM_2015_9_a3
ER  - 
%0 Journal Article
%A S. E. Samokhvalov
%A E. B. Balakireva
%T Group-theoretic matching of the length principle and equality principle in geometry
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 31-45
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/
%G ru
%F IVM_2015_9_a3
S. E. Samokhvalov; E. B. Balakireva. Group-theoretic matching of the length principle and equality principle in geometry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 31-45. http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/

[1] Riman B., O gipotezakh, lezhaschikh v osnovanii geometrii, Gostekhteoretizdat, M., 1956

[2] Klein F., Sravnitelnoe obozrenie noveishikh geometricheskikh issledovanii, “Erlangenskaya programma”, Gostekhteoretizdat, M., 1956

[3] Kartan E., Teoriya grupp i geometriya, Gostekhteoretizdat, M., 1956

[4] Zulanke R., Vintgen P., Differentsialnaya geometriya, Mir, M., 1975

[5] Sabinin L. V., “Metody neassotsiativnoi algebry v differentsialnoi geometrii”, Osnovy differentsialnoi geometrii, V 2-kh t., eds. Sh. Kobayasi, K. Nomidzu, Nauka, M., 1981

[6] Samokhvalov S. E., “Teoretiko-gruppovoe opisanie kalibrovochnykh polei”, Teor. i matem. fizika, 76:1 (1988), 66–77 | MR

[7] Samokhvalov S. E., “O zadanii svyaznostei v rassloeniyakh deistviem beskonechnykh grupp Li”, Ukr. matem. zhurn., 1991, no. 12, 1599–1603 | MR | Zbl

[8] Samokhvalov S. E., Reznyk K. O., “Cartan equation as the condition of the existence of an infinite group Lie theory and its applications in physics VI”, Bulg. J. Phys., 33:S2 (2006), 309–314 | Zbl

[9] Samokhvalov S. Є., “Teoretiko-grupovii opis rimanovikh prostoriv”, Ukr. matem. zhurn., 2003, no. 9, 1238–1248 | MR | Zbl

[10] Kartan E., Rimanova geometriya v ortogonalnom repere, Izd-vo MGU, M., 1960

[11] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR

[12] Samokhvalov S. Є., “Fundamentalna grupa prostoru Einshteina”, Mat. modelyuvannya, 2008, no. 2, 15–19