@article{IVM_2015_9_a3,
author = {S. E. Samokhvalov and E. B. Balakireva},
title = {Group-theoretic matching of the length principle and equality principle in geometry},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {31--45},
year = {2015},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/}
}
TY - JOUR AU - S. E. Samokhvalov AU - E. B. Balakireva TI - Group-theoretic matching of the length principle and equality principle in geometry JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 31 EP - 45 IS - 9 UR - http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/ LA - ru ID - IVM_2015_9_a3 ER -
S. E. Samokhvalov; E. B. Balakireva. Group-theoretic matching of the length principle and equality principle in geometry. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 31-45. http://geodesic.mathdoc.fr/item/IVM_2015_9_a3/
[1] Riman B., O gipotezakh, lezhaschikh v osnovanii geometrii, Gostekhteoretizdat, M., 1956
[2] Klein F., Sravnitelnoe obozrenie noveishikh geometricheskikh issledovanii, “Erlangenskaya programma”, Gostekhteoretizdat, M., 1956
[3] Kartan E., Teoriya grupp i geometriya, Gostekhteoretizdat, M., 1956
[4] Zulanke R., Vintgen P., Differentsialnaya geometriya, Mir, M., 1975
[5] Sabinin L. V., “Metody neassotsiativnoi algebry v differentsialnoi geometrii”, Osnovy differentsialnoi geometrii, V 2-kh t., eds. Sh. Kobayasi, K. Nomidzu, Nauka, M., 1981
[6] Samokhvalov S. E., “Teoretiko-gruppovoe opisanie kalibrovochnykh polei”, Teor. i matem. fizika, 76:1 (1988), 66–77 | MR
[7] Samokhvalov S. E., “O zadanii svyaznostei v rassloeniyakh deistviem beskonechnykh grupp Li”, Ukr. matem. zhurn., 1991, no. 12, 1599–1603 | MR | Zbl
[8] Samokhvalov S. E., Reznyk K. O., “Cartan equation as the condition of the existence of an infinite group Lie theory and its applications in physics VI”, Bulg. J. Phys., 33:S2 (2006), 309–314 | Zbl
[9] Samokhvalov S. Є., “Teoretiko-grupovii opis rimanovikh prostoriv”, Ukr. matem. zhurn., 2003, no. 9, 1238–1248 | MR | Zbl
[10] Kartan E., Rimanova geometriya v ortogonalnom repere, Izd-vo MGU, M., 1960
[11] Ovsyannikov L. V., Gruppovoi analiz differentsialnykh uravnenii, Nauka, M., 1978 | MR
[12] Samokhvalov S. Є., “Fundamentalna grupa prostoru Einshteina”, Mat. modelyuvannya, 2008, no. 2, 15–19