On absolute convergence of multiple Fourier series
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 12-21
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider absolute convergence of multiple series of Fourier–Haar coefficients for functions of many variables with partial derivatives of higher order. It is shown that the obtained results are best possible for general orthonormal systems.
Mots-clés :
Fourier coefficients
Keywords: Haar system, partial derivatives, general orthonormal systems.
Keywords: Haar system, partial derivatives, general orthonormal systems.
@article{IVM_2015_9_a1,
author = {L. D. Gogoladze and V. Sh. Tsagareishvili},
title = {On absolute convergence of multiple {Fourier} series},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {12--21},
year = {2015},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_9_a1/}
}
L. D. Gogoladze; V. Sh. Tsagareishvili. On absolute convergence of multiple Fourier series. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2015), pp. 12-21. http://geodesic.mathdoc.fr/item/IVM_2015_9_a1/
[1] Kashin B. S., Saakyan A. A., Ortogonalnye ryady, AFS, M., 1999
[2] Gogoladze L., Tsagareishvili V., “Absolute convergence of multiple Fourier–Haar series”, Georgian Math. J., 21:1 (2014), 69–74 | DOI | MR | Zbl
[3] Kachmazh S., Shteingauz G., Teoriya ortogonalnykh ryadov, GIFML, M., 1958
[4] Gogoladze L., Tsagareishvili V., “Absolyutnaya skhodimost ryadov Fure–Khaara funktsii dvukh peremennykh”, Izv. vuzov. Matem., 2008, no. 5, 14–25 | MR | Zbl
[5] Ulyanov P. L., “O ryadakh po sisteme Khaara”, Matem. sb., 63(105):3 (1964), 356–391 | MR | Zbl