Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_8_a4, author = {O. S. Kudryavtseva}, title = {Holomorphic maps of the disk into itself with invariant diameter and bounded distortion}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {51--63}, publisher = {mathdoc}, number = {8}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_8_a4/} }
TY - JOUR AU - O. S. Kudryavtseva TI - Holomorphic maps of the disk into itself with invariant diameter and bounded distortion JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 51 EP - 63 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_8_a4/ LA - ru ID - IVM_2015_8_a4 ER -
O. S. Kudryavtseva. Holomorphic maps of the disk into itself with invariant diameter and bounded distortion. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 51-63. http://geodesic.mathdoc.fr/item/IVM_2015_8_a4/
[1] Schröeder E., “Über iterierte Funktionen”, Math. Ann., 3:2 (1871), 296–322 | DOI | MR
[2] Königs G., “Recherches sur les intégrales des certaines equations fonctionelle”, Ann. Ecole Norm. Sup., 1:3 (1884), 3–41
[3] Baker I. N., “Fractional iteration near a fixpoint of multiplier 1”, J. Australian Math. Soc., 4:2 (1964), 143–148 | DOI | MR | Zbl
[4] Karlin S., McGregor J., “Embedding iterates of analytic functions with two fixed points into continuous groups”, Trans. Amer. Math. Soc., 132:1 (1968), 137–145 | DOI | MR | Zbl
[5] Berkson E., Porta H., “Semigroups of analytic functions and composition operators”, Michigan Math. J., 25:1 (1978), 101–115 | DOI | MR | Zbl
[6] Cowen C. C., “Iteration and the solution of functional equations for functions analytic in the unit disk”, Trans. Amer. Math. Soc., 265:1 (1981), 69–95 | DOI | MR | Zbl
[7] Goryainov V. V., “Drobnye iteratsii analiticheskikh v edinichnom kruge funktsii s zadannymi nepodvizhnymi tochkami”, Matem. sb., 182:9 (1991), 1281–1299 | MR | Zbl
[8] Goryainov V. V., Kudryavtseva O. S., “Odnoparametricheskie polugruppy analiticheskikh funktsii, nepodvizhnye tochki i funktsiya Kënigsa”, Matem. sb., 202:7 (2011), 43–74 | DOI | MR | Zbl
[9] Goryainov V. V., “Polugruppy analiticheskikh funktsii v analize i prilozheniyakh”, UMN, 67:6 (2012), 5–52 | DOI | MR | Zbl
[10] Kudryavtseva O. S., “Funktsiya Kënigsa i drobnoe iterirovanie analiticheskikh v edinichnom kruge funktsii s veschestvennymi koeffitsientami i nepodvizhnymi tochkami”, Izv. Sarat. gos. un-ta. Ser. Matem. Mekhan. Inform., 13:1 (2013), 67–71 | Zbl
[11] Contreras M. D., Díaz-Madrigal S., Pommerenke Ch., “Fixed points and boundary behaviour of the Koenigs function”, Ann. Acad. Sci. Fenn. Math., 29:2 (2004), 471–488 | MR | Zbl
[12] Valiron Zh., Analiticheskie funktsii, GITTL, M., 1957
[13] Ahlfors L. V., Conformal invariants: topics in geometric function theory, McGraw-Hill Book Company, New York, 1973 | MR | Zbl
[14] Goluzin G. M., Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR
[15] Krein M. G., Nudelman A. A., Problema momentov Markova i ekstremalnye zadachi, Nauka, M., 1973 | MR