Application of normalized key functions in a~problem of branching of periodic extremals
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 14-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we construct a procedure of approximate calculation and analysis of branches of bifurcating solutions to a periodic variational problem. The goal of the work is a study of bifurcation of cycles in dynamic systems in cases of double resonances $1:2:3$, $1:2:4$, $p:q:p+q$ and others. An ordinary differential equation (ODE) of the sixth order is considered as a general model equation. Application of the Lyapunov–Schmidt method and transition to boundary and angular singularities allow to simplify a description of branches of extremals and caustics. Also we list systems of generators of algebraic invariants under an orthogonal semi-free action of the circle on $\mathbb R^6$ and normal forms of the main part of the key functions.
Keywords: Fredholm functionals, extremals, circular symmetry, resonance, Lyapunov–Schmidt method.
Mots-clés : bifurcation
@article{IVM_2015_8_a1,
     author = {E. V. Derunova and Yu. I. Sapronov},
     title = {Application of normalized key functions in a~problem of branching of periodic extremals},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--24},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_8_a1/}
}
TY  - JOUR
AU  - E. V. Derunova
AU  - Yu. I. Sapronov
TI  - Application of normalized key functions in a~problem of branching of periodic extremals
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 14
EP  - 24
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_8_a1/
LA  - ru
ID  - IVM_2015_8_a1
ER  - 
%0 Journal Article
%A E. V. Derunova
%A Yu. I. Sapronov
%T Application of normalized key functions in a~problem of branching of periodic extremals
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 14-24
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_8_a1/
%G ru
%F IVM_2015_8_a1
E. V. Derunova; Yu. I. Sapronov. Application of normalized key functions in a~problem of branching of periodic extremals. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2015), pp. 14-24. http://geodesic.mathdoc.fr/item/IVM_2015_8_a1/

[1] Darinskii B. M., Sapronov Yu. I., Tsarev S. L., “Bifurkatsii ekstremalei fredgolmovykh funktsionalov”, Sovremen. matem. Fundament. napravleniya, 12, MAI, M., 2004, 3–140 | MR | Zbl

[2] Sapronov Yu. I., Tsarev S. L., “Globalnoe sravnenie konechnomernykh reduktsii v gladkikh variatsionnykh zadachakh”, Matem. zametki, 67:5 (2000), 745–754 | DOI | MR | Zbl

[3] Tsarev S. L., “Sravnenie konechnomernykh reduktsii v gladkikh variatsionnykh zadachakh c simmetriei”, Sovremen. matem. i ee prilozh. (Tbilisi), 7, 2003, 87–91

[4] Karpova A. P., Ladykina U. V., Sapronov Yu. I., “Bifurkatsionnyi analiz fredgolmovykh uravnenii s krugovoi simmetriei i ego prilozheniya”, Matem. modeli i operatornye uravneniya, 5, ch. 1, “Sozvezdie”, VGU, Voronezh, 2008, 45–90

[5] Darinskii B. M., Kolesnikova I. V., Sapronov Yu. I., “Vetvlenie faz kristalla, opredelyaemykh termodinamicheskim potentsialom shestogo poryadka”, Sistemy upravleniya i informats. tekhnologii, 2009, no. 1(35), 72–76

[6] Darinskii B. M., Kolesnikova I. V., Sapronov Yu. I., “Vetvlenie segnetoelektricheskikh faz neodnorodnogo kristalla vblizi kriticheskoi fazy s trekhmernoi osobennostyu shestogo poryadka”, Vestn. Voronezhsk. gos. un-ta. Ser. Fiz. Matem., 2009, no. 1, 101–107

[7] Arnold V. I., Varchenko A. N., Gusein-Zade S. M., Osobennosti differentsiruemykh otobrazhenii. Klassifikatsiya kriticheskikh tochek kaustik i volnovykh frontov, Nauka, M., 1982 | MR

[8] Zachepa A. V., “Trekhmodovye vyrozhdeniya v kraevoi zadache dlya obyknovennogo differentsialnogo uravneniya shestogo poryadka”, Sb. tr. molodykh uchenykh matem. f-ta VGU, Izd. VGU, Voronezh, 2003, 52–58

[9] Zachepa A. V., Sapronov Yu. I., “O bifurkatsii ekstremalei fredgolmova funktsionala iz vyrozhdennoi tochki minimuma s osobennostyu $3$-mernoi sborki”, Tr. matem. f-ta (novaya seriya), 9, Izd. VGU, Voronezh, 2005, 57–71

[10] Kolesnikova I. V., Sapronov Yu. I., Tsarev S. L., “K bifurkatsionnomu analizu 2-tochechnykh kraevykh zadach klassicheskoi mekhaniki”, Tr. Voronezhsk. zimnei matem. shkoly S. G. Kreina, Izd. VGU, Voronezh, 2006, 63–78

[11] Poston T., Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980 | MR

[12] Breker T., Lander L., Differentsiruemye rostki i katastrofy, Mir, M., 1977

[13] Derunova E. V., Sapronov Yu. I., “Klyuchevye funktsii, opredelyayuschie vetvlenie periodicheskikh ekstremalei v statsionarnykh tochkakh s dvoinymi rezonansami poryadka tri”, Matem. modeli i operatornye uravneniya, 7, Izd. VGU, Voronezh, 2011, 34–47

[14] Sapronov Yu. I., Derunova E. V., “Bifurcations of critical orbits of $SO(2)$-invariant Fredholm functionals at critical points with double resonances”, Global and Stochastic Anal., 2:1 (2012), 133–148 | MR | Zbl

[15] Siersma D., “Singularities of functions on boundaries, corners, etc.”, Quart. J. Oxford Ser., 32:125 (1981), 119–127 | DOI | MR | Zbl

[16] Gnezdilov A. V., “Bifurkatsii kriticheskikh torov dlya funktsionalov s $3$-krugovoi simmetriei”, Funkts. analiz, 34:1 (2000), 83–86 | DOI | MR | Zbl