Mots-clés : Fejer kernel, Vallée-Poussin kernel
@article{IVM_2015_7_a8,
author = {N. Temirgaliyev and N. Zh. Nauryzbayev and A. A. Shomanova},
title = {Approximative possibilities of computational aggregates of the {{\textquotedblleft}Smolyak} type{\textquotedblright} with {Dirichlet,} {Fejer} and {Vall\'ee-Poussin} kernels in the scale of {Ul'yanov} classes},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {75--81},
year = {2015},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/}
}
TY - JOUR AU - N. Temirgaliyev AU - N. Zh. Nauryzbayev AU - A. A. Shomanova TI - Approximative possibilities of computational aggregates of the “Smolyak type” with Dirichlet, Fejer and Vallée-Poussin kernels in the scale of Ul'yanov classes JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 75 EP - 81 IS - 7 UR - http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/ LA - ru ID - IVM_2015_7_a8 ER -
%0 Journal Article %A N. Temirgaliyev %A N. Zh. Nauryzbayev %A A. A. Shomanova %T Approximative possibilities of computational aggregates of the “Smolyak type” with Dirichlet, Fejer and Vallée-Poussin kernels in the scale of Ul'yanov classes %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 75-81 %N 7 %U http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/ %G ru %F IVM_2015_7_a8
N. Temirgaliyev; N. Zh. Nauryzbayev; A. A. Shomanova. Approximative possibilities of computational aggregates of the “Smolyak type” with Dirichlet, Fejer and Vallée-Poussin kernels in the scale of Ul'yanov classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 75-81. http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/
[1] Smolyak S. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, DAN SSSR, 148:5 (1963), 1042–1045 | Zbl
[2] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Diss. $\dots$ kand. fiz.-matem. nauk., Org. p/ya. 118–119, M., 2325
[3] Temirgaliev N., “Klassy $U_s(\beta,\theta,\alpha;\psi)$ i kvadraturnye formuly”, Dokl. RAN, 393:5 (2003), 605–608 | MR
[4] Temirgaliev N., “Tenzornye proizvedeniya funktsionalov i ikh primeneniya”, Dokl. RAN, 430:4 (2010), 460–465 | MR | Zbl
[5] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR
[6] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primeneniya kvadraturnykh formul Smolyaka k chislennomu integrirovaniyu koeffitsientov Fure i v zadachakh vosstanovleniya”, Izv. vuzov. Matem., 2010, no. 3, 52–71 | MR | Zbl
[7] Nauryzbayev N., Temirgaliyev N., “An exact order of discrepancy of the Smolyak grid and some general conclusions in the theory of numerical integration”, Found. Comput. Math., 12:2 (2012), 139–172 | DOI | MR | Zbl
[8] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 73:2 (2009), 183–224 | DOI | MR | Zbl
[9] Paskov S., “Average case complexity for multivariate integration for smooth functions”, J. Complexity, 9:2 (1993), 291–312 | DOI | MR | Zbl
[10] Wasilkowski G., Woźniakowski H., “Explicit cost bounds of algorithms for multivariate tensor product problems”, J. Complexity, 11:1 (1995), 1–56 | DOI | MR | Zbl