Approximative possibilities of computational aggregates of the “Smolyak type” with Dirichlet, Fejer and Vallée-Poussin kernels in the scale of Ul'yanov classes
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 75-81 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In Ul'yanov classes we carry out comparative analysis of computational units which are constructed by the method of tensor products of functionals with means of trigonometric Fourier series.
Keywords: recovering operator, error of the recovery, tensor product of functionals, Dirichlet kernel, Korobov classes, Ul'yanov classes.
Mots-clés : Fejer kernel, Vallée-Poussin kernel
@article{IVM_2015_7_a8,
     author = {N. Temirgaliyev and N. Zh. Nauryzbayev and A. A. Shomanova},
     title = {Approximative possibilities of computational aggregates of the {{\textquotedblleft}Smolyak} type{\textquotedblright} with {Dirichlet,} {Fejer} and {Vall\'ee-Poussin} kernels in the scale of {Ul'yanov} classes},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--81},
     year = {2015},
     number = {7},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/}
}
TY  - JOUR
AU  - N. Temirgaliyev
AU  - N. Zh. Nauryzbayev
AU  - A. A. Shomanova
TI  - Approximative possibilities of computational aggregates of the “Smolyak type” with Dirichlet, Fejer and Vallée-Poussin kernels in the scale of Ul'yanov classes
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 75
EP  - 81
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/
LA  - ru
ID  - IVM_2015_7_a8
ER  - 
%0 Journal Article
%A N. Temirgaliyev
%A N. Zh. Nauryzbayev
%A A. A. Shomanova
%T Approximative possibilities of computational aggregates of the “Smolyak type” with Dirichlet, Fejer and Vallée-Poussin kernels in the scale of Ul'yanov classes
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 75-81
%N 7
%U http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/
%G ru
%F IVM_2015_7_a8
N. Temirgaliyev; N. Zh. Nauryzbayev; A. A. Shomanova. Approximative possibilities of computational aggregates of the “Smolyak type” with Dirichlet, Fejer and Vallée-Poussin kernels in the scale of Ul'yanov classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 75-81. http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/

[1] Smolyak S. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, DAN SSSR, 148:5 (1963), 1042–1045 | Zbl

[2] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Diss. $\dots$ kand. fiz.-matem. nauk., Org. p/ya. 118–119, M., 2325

[3] Temirgaliev N., “Klassy $U_s(\beta,\theta,\alpha;\psi)$ i kvadraturnye formuly”, Dokl. RAN, 393:5 (2003), 605–608 | MR

[4] Temirgaliev N., “Tenzornye proizvedeniya funktsionalov i ikh primeneniya”, Dokl. RAN, 430:4 (2010), 460–465 | MR | Zbl

[5] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR

[6] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primeneniya kvadraturnykh formul Smolyaka k chislennomu integrirovaniyu koeffitsientov Fure i v zadachakh vosstanovleniya”, Izv. vuzov. Matem., 2010, no. 3, 52–71 | MR | Zbl

[7] Nauryzbayev N., Temirgaliyev N., “An exact order of discrepancy of the Smolyak grid and some general conclusions in the theory of numerical integration”, Found. Comput. Math., 12:2 (2012), 139–172 | DOI | MR | Zbl

[8] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 73:2 (2009), 183–224 | DOI | MR | Zbl

[9] Paskov S., “Average case complexity for multivariate integration for smooth functions”, J. Complexity, 9:2 (1993), 291–312 | DOI | MR | Zbl

[10] Wasilkowski G., Woźniakowski H., “Explicit cost bounds of algorithms for multivariate tensor product problems”, J. Complexity, 11:1 (1995), 1–56 | DOI | MR | Zbl