Approximative possibilities of computational aggregates of the ``Smolyak type'' with Dirichlet, Fejer and Vall\'ee-Poussin kernels in the scale of Ul'yanov classes
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 75-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

In Ul'yanov classes we carry out comparative analysis of computational units which are constructed by the method of tensor products of functionals with means of trigonometric Fourier series.
Keywords: recovering operator, error of the recovery, tensor product of functionals, Dirichlet kernel, Korobov classes, Ul'yanov classes.
Mots-clés : Fejer kernel, Vallée-Poussin kernel
@article{IVM_2015_7_a8,
     author = {N. Temirgaliyev and N. Zh. Nauryzbayev and A. A. Shomanova},
     title = {Approximative possibilities of computational aggregates of the {``Smolyak} type'' with {Dirichlet,} {Fejer} and {Vall\'ee-Poussin} kernels in the scale of {Ul'yanov} classes},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--81},
     publisher = {mathdoc},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/}
}
TY  - JOUR
AU  - N. Temirgaliyev
AU  - N. Zh. Nauryzbayev
AU  - A. A. Shomanova
TI  - Approximative possibilities of computational aggregates of the ``Smolyak type'' with Dirichlet, Fejer and Vall\'ee-Poussin kernels in the scale of Ul'yanov classes
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 75
EP  - 81
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/
LA  - ru
ID  - IVM_2015_7_a8
ER  - 
%0 Journal Article
%A N. Temirgaliyev
%A N. Zh. Nauryzbayev
%A A. A. Shomanova
%T Approximative possibilities of computational aggregates of the ``Smolyak type'' with Dirichlet, Fejer and Vall\'ee-Poussin kernels in the scale of Ul'yanov classes
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 75-81
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/
%G ru
%F IVM_2015_7_a8
N. Temirgaliyev; N. Zh. Nauryzbayev; A. A. Shomanova. Approximative possibilities of computational aggregates of the ``Smolyak type'' with Dirichlet, Fejer and Vall\'ee-Poussin kernels in the scale of Ul'yanov classes. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 75-81. http://geodesic.mathdoc.fr/item/IVM_2015_7_a8/

[1] Smolyak S. A., “Kvadraturnye i interpolyatsionnye formuly na tenzornykh proizvedeniyakh nekotorykh klassov funktsii”, DAN SSSR, 148:5 (1963), 1042–1045 | Zbl

[2] Smolyak S. A., Ob optimalnom vosstanovlenii funktsii i funktsionalov ot nikh, Diss. $\dots$ kand. fiz.-matem. nauk., Org. p/ya. 118–119, M., 2325

[3] Temirgaliev N., “Klassy $U_s(\beta,\theta,\alpha;\psi)$ i kvadraturnye formuly”, Dokl. RAN, 393:5 (2003), 605–608 | MR

[4] Temirgaliev N., “Tenzornye proizvedeniya funktsionalov i ikh primeneniya”, Dokl. RAN, 430:4 (2010), 460–465 | MR | Zbl

[5] Korobov N. M., Teoretiko-chislovye metody v priblizhennom analize, Fizmatgiz, M., 1963 | MR

[6] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primeneniya kvadraturnykh formul Smolyaka k chislennomu integrirovaniyu koeffitsientov Fure i v zadachakh vosstanovleniya”, Izv. vuzov. Matem., 2010, no. 3, 52–71 | MR | Zbl

[7] Nauryzbayev N., Temirgaliyev N., “An exact order of discrepancy of the Smolyak grid and some general conclusions in the theory of numerical integration”, Found. Comput. Math., 12:2 (2012), 139–172 | DOI | MR | Zbl

[8] Temirgaliev N., Kudaibergenov S. S., Shomanova A. A., “Primenenie tenzornykh proizvedenii funktsionalov v zadachakh chislennogo integrirovaniya”, Izv. RAN. Ser. matem., 73:2 (2009), 183–224 | DOI | MR | Zbl

[9] Paskov S., “Average case complexity for multivariate integration for smooth functions”, J. Complexity, 9:2 (1993), 291–312 | DOI | MR | Zbl

[10] Wasilkowski G., Woźniakowski H., “Explicit cost bounds of algorithms for multivariate tensor product problems”, J. Complexity, 11:1 (1995), 1–56 | DOI | MR | Zbl