Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_7_a5, author = {R. B. Salimov}, title = {Asymptotical representation of singular integral with the {Hilbert} kernel near a~point of weak continuity of density}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {58--62}, publisher = {mathdoc}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/} }
TY - JOUR AU - R. B. Salimov TI - Asymptotical representation of singular integral with the Hilbert kernel near a~point of weak continuity of density JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 58 EP - 62 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/ LA - ru ID - IVM_2015_7_a5 ER -
%0 Journal Article %A R. B. Salimov %T Asymptotical representation of singular integral with the Hilbert kernel near a~point of weak continuity of density %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 58-62 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/ %G ru %F IVM_2015_7_a5
R. B. Salimov. Asymptotical representation of singular integral with the Hilbert kernel near a~point of weak continuity of density. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 58-62. http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/
[1] Salimov R. B., “K povedeniyu singulyarnogo integrala s yadrom Gilberta vblizi tochki slaboi nepreryvnosti plotnosti”, Izv. vuzov. Matem., 2013, no. 6, 37–44 | MR | Zbl
[2] Salimov R. B., Shmagin Yu. A., “Ob issledovanii povedeniya singulyarnogo integrala s yadrom Gilberta vblizi tochki slaboi nepreryvnosti plotnosti”, Tr. matem. tsentra im. N. I. Lobachevskogo, 46, 2013, 399–402
[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR