Asymptotical representation of singular integral with the Hilbert kernel near a point of weak continuity of density
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 58-62
Cet article a éte moissonné depuis la source Math-Net.Ru
We derive asymptotical representation of singular integral with the Hilbert kernel near a fixed point at which an integral density vanishes as a negative power of module of logarithm of a distance from variable point to a fixed one.
Keywords:
asymptotical representation, singular integral, weak continuity.
Mots-clés : Hilbert kernel, Hölder condition
Mots-clés : Hilbert kernel, Hölder condition
@article{IVM_2015_7_a5,
author = {R. B. Salimov},
title = {Asymptotical representation of singular integral with the {Hilbert} kernel near a~point of weak continuity of density},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {58--62},
year = {2015},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/}
}
TY - JOUR AU - R. B. Salimov TI - Asymptotical representation of singular integral with the Hilbert kernel near a point of weak continuity of density JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 58 EP - 62 IS - 7 UR - http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/ LA - ru ID - IVM_2015_7_a5 ER -
R. B. Salimov. Asymptotical representation of singular integral with the Hilbert kernel near a point of weak continuity of density. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 58-62. http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/
[1] Salimov R. B., “K povedeniyu singulyarnogo integrala s yadrom Gilberta vblizi tochki slaboi nepreryvnosti plotnosti”, Izv. vuzov. Matem., 2013, no. 6, 37–44 | MR | Zbl
[2] Salimov R. B., Shmagin Yu. A., “Ob issledovanii povedeniya singulyarnogo integrala s yadrom Gilberta vblizi tochki slaboi nepreryvnosti plotnosti”, Tr. matem. tsentra im. N. I. Lobachevskogo, 46, 2013, 399–402
[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR