Asymptotical representation of singular integral with the Hilbert kernel near a~point of weak continuity of density
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 58-62.

Voir la notice de l'article provenant de la source Math-Net.Ru

We derive asymptotical representation of singular integral with the Hilbert kernel near a fixed point at which an integral density vanishes as a negative power of module of logarithm of a distance from variable point to a fixed one.
Keywords: asymptotical representation, singular integral, Hölder condition, weak continuity.
Mots-clés : Hilbert kernel
@article{IVM_2015_7_a5,
     author = {R. B. Salimov},
     title = {Asymptotical representation of singular integral with the {Hilbert} kernel near a~point of weak continuity of density},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {58--62},
     publisher = {mathdoc},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/}
}
TY  - JOUR
AU  - R. B. Salimov
TI  - Asymptotical representation of singular integral with the Hilbert kernel near a~point of weak continuity of density
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 58
EP  - 62
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/
LA  - ru
ID  - IVM_2015_7_a5
ER  - 
%0 Journal Article
%A R. B. Salimov
%T Asymptotical representation of singular integral with the Hilbert kernel near a~point of weak continuity of density
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 58-62
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/
%G ru
%F IVM_2015_7_a5
R. B. Salimov. Asymptotical representation of singular integral with the Hilbert kernel near a~point of weak continuity of density. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 58-62. http://geodesic.mathdoc.fr/item/IVM_2015_7_a5/

[1] Salimov R. B., “K povedeniyu singulyarnogo integrala s yadrom Gilberta vblizi tochki slaboi nepreryvnosti plotnosti”, Izv. vuzov. Matem., 2013, no. 6, 37–44 | MR | Zbl

[2] Salimov R. B., Shmagin Yu. A., “Ob issledovanii povedeniya singulyarnogo integrala s yadrom Gilberta vblizi tochki slaboi nepreryvnosti plotnosti”, Tr. matem. tsentra im. N. I. Lobachevskogo, 46, 2013, 399–402

[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR