Boundary-value problem with Saigo operators for mixed type equation of the third order with multiple characteristics
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 49-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a boundary-value problem with shift for mixed-type equation of the third order. In the hyperbolic field boundary condition contains a linear combination of generalized operators of fractional integro-differentiation. We prove a unique solvability of the problem.
Keywords: boundary-value problem, generalized operators of fractional integro-differentiation, Gauss hypergeometric function, Abel integral equation, Fredholm integral equation of the second kind.
@article{IVM_2015_7_a4,
     author = {O. A. Repin and S. K. Kumykova},
     title = {Boundary-value problem with {Saigo} operators for mixed type equation of the third order with multiple characteristics},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {49--57},
     publisher = {mathdoc},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a4/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - S. K. Kumykova
TI  - Boundary-value problem with Saigo operators for mixed type equation of the third order with multiple characteristics
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 49
EP  - 57
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_7_a4/
LA  - ru
ID  - IVM_2015_7_a4
ER  - 
%0 Journal Article
%A O. A. Repin
%A S. K. Kumykova
%T Boundary-value problem with Saigo operators for mixed type equation of the third order with multiple characteristics
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 49-57
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_7_a4/
%G ru
%F IVM_2015_7_a4
O. A. Repin; S. K. Kumykova. Boundary-value problem with Saigo operators for mixed type equation of the third order with multiple characteristics. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 49-57. http://geodesic.mathdoc.fr/item/IVM_2015_7_a4/

[1] Saigo M., “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl

[2] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR

[3] Repin O. A., Kraevye zadachi so smescheniem dlya uravnenii giperbolicheskogo i smeshannogo tipov, Izd-vo Saratovsk. gos. un-ta, Samarsk. filial, Samara, 1992 | MR

[4] Eleev V. A., Kumykova S. K., “Vnutrennekraevaya zadacha dlya uravneniya smeshannogo tipa tretego poryadka s kratnymi kharakteristikami”, Izv. Kabardino-Balkarsk. nauchn. tsentra RAN, 2010, no. 5(37), ch. 2, 5–14

[5] Repin O. A., Kumykova S. K., “Nelokalnaya zadacha dlya uravneniya smeshannogo tipa tretego poryadka s obobschennymi operatorami drobnogo integro-differentsirovaniya proizvolnogo poryadka”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-matem. nauki, 2011, no. 4(25), 25–36 | DOI

[6] Repin O. A., Kumykova S. K., “Zadacha so smescheniem dlya uravneniya tretego poryadka s razryvnymi koeffitsientami”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-matem. nauki, 2012, no. 4(29), 17–25 | DOI

[7] Smirnov M. M., Uravneniya smeshannogo tipa, Nauka, M., 1970 | MR

[8] Kumykova S. K., “Ob odnoi zadache so smescheniem dlya uravneniya $\mathrm{sign}\,y|y|^mu_{xx}+u_{yy}=0$”, Differents. uravneniya, 12:1 (1976), 79–88 | MR | Zbl

[9] Trikomi F., Lektsii po uravneniyam v chastnykh proizvodnykh, In. lit., M., 1957

[10] Irgashev Yu., “Nekotorye kraevye zadachi dlya uravnenii tretego poryadka s kratnymi kharakteristikami”, Kraevye zadachi dlya differentsialnykh uravnenii i ikh prilozheniya, FAN, Tashkent, 1976, 17–27