Penalty method for the state equation for an elliptical optimal control problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 36-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

We solve an optimal control problem of a system governed by a linear elliptic equation with pointwise control constraints and non-local state constraints by finite difference method. A discrete optimal control problem is approximated by a minimization problem with penaltized state equation. We derive an error estimates. We also prove the rate of convergence of block Gauss–Zeidel iterative solution method for the penaltized problem. We present the results of the numerical experiments.
Keywords: constraint saddle point problem, optimal control, finite difference approximation, iterative methods.
@article{IVM_2015_7_a3,
     author = {A. V. Lapin and D. G. Zalyalov},
     title = {Penalty method for the state equation for an elliptical optimal control problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {36--48},
     publisher = {mathdoc},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a3/}
}
TY  - JOUR
AU  - A. V. Lapin
AU  - D. G. Zalyalov
TI  - Penalty method for the state equation for an elliptical optimal control problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 36
EP  - 48
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_7_a3/
LA  - ru
ID  - IVM_2015_7_a3
ER  - 
%0 Journal Article
%A A. V. Lapin
%A D. G. Zalyalov
%T Penalty method for the state equation for an elliptical optimal control problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 36-48
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_7_a3/
%G ru
%F IVM_2015_7_a3
A. V. Lapin; D. G. Zalyalov. Penalty method for the state equation for an elliptical optimal control problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 36-48. http://geodesic.mathdoc.fr/item/IVM_2015_7_a3/

[1] Bergounioux M., Haddou M., Hintermüller M., Kunisch K., “A comparison of a Moreau–Yosida-based active set strategy and interior point methods for constrained optimal control problems”, SIAM J. Optim., 11:2 (2000), 495–521 | DOI | MR | Zbl

[2] Bergounioux M., Kunisch K., “Primal-dual active set strategy for state-constrained optimal control problems”, Comput. Optim. Appl., 22:2 (2002), 193–224 | DOI | MR | Zbl

[3] Tröltzsch F., Yousept I., “A regularization method for the numerical solution of elliptic boundary control problems with pointwise state constraints”, Comput. Optim. Appl., 42:1 (2009), 43–66 | DOI | MR | Zbl

[4] Hintermüller M., Hinze M., “Moreau–Yosida regularization in state constrained elliptic control problems: error estimates and parameter adjustment”, SIAM J. Numer. Anal., 47:3 (2009), 1666–1683 | DOI | MR | Zbl

[5] Gräser C., Kornhuber R., “Nonsmooth Newton methods for set-valued saddle point problems”, SIAM J. Numer. Anal., 47:2 (2009), 1251–1273 | DOI | MR | Zbl

[6] Schiela A., Günther A., “An interior point algorithm with inexact step computation in function space for state constrained optimal control”, Numer. Math., 119:2 (2011), 373–407 | DOI | MR | Zbl

[7] Hinze M., Schiela A., “Discretization of interior point methods for state constrained elliptic optimal control problems: optimal error estimates and parameter adjustment”, Comput. Optim. Appl., 48:3 (2011), 581–600 | DOI | MR | Zbl

[8] Laitinen E., Lapin A., Lapin S., “On the iterative solution methods of finite-dimensional inclusions with applications to optimal control problems”, Comp. Methods Appl. Math., 10:3 (2010), 283–301 | MR | Zbl

[9] Lapin A., “Preconditioned Uzawa-type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl

[10] Lapin A., Khasanov M., “State-constrained optimal control of an elliptic equation with its right-hand side used as control function”, Lobachevskii J. Math., 32:4 (2011), 453–462 | DOI | MR | Zbl

[11] Laitinen E., Lapin A., “Iterative solution methods for a class of state constrained optimal control problems”, Appl. Math., 3:12 (2012), 1862–1867 | DOI

[12] Zalyalov D. G., Lapin A. V., “Chislennoe reshenie odnoi zadachi optimalnogo upravleniya sistemoi, opisyvaemoi lineinym ellipticheskim uravneniem, pri nalichii nelokalnykh ogranichenii na sostoyanie sistemy”, Uchen. zap. Kazansk. un-ta, 154, no. 3, 2012, 129–144

[13] Laitinen E., Lapin A., “Iterative solution methods for the large-scale constrained saddle point problems”, Numerical Methods for Differential Equations, Optimization, and Technological Problems, Comp. Meth. Appl. Sci., 27, Springer, Dordrecht, 2013, 19–39 | MR | Zbl

[14] Laitinen E., Lapin A., Lapin S., “Iterative solution methods for variational inequalities with nonlinear main operator and constraints to gradient of solution”, Lobachevskii J. Math., 33:4 (2012), 341–352 | DOI | MR | Zbl

[15] Barbu V., Nonlinear semigroups and differential equations in Banach spaces, Editura Academiei Republicii Socialiste România, Bucharest; Noordhoff International Publishing, Leiden, 1976 | MR | Zbl