Penalty method for the state equation for an elliptical optimal control problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 36-48
Voir la notice de l'article provenant de la source Math-Net.Ru
We solve an optimal control problem of a system governed by a linear elliptic equation with pointwise control constraints and non-local state constraints by finite difference method. A discrete optimal control problem is approximated by a minimization problem with penaltized state equation. We derive an error estimates. We also prove the rate of convergence of block Gauss–Zeidel iterative solution method for the penaltized problem. We present the results of the numerical experiments.
Keywords:
constraint saddle point problem, optimal control, finite difference approximation, iterative methods.
@article{IVM_2015_7_a3,
author = {A. V. Lapin and D. G. Zalyalov},
title = {Penalty method for the state equation for an elliptical optimal control problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {36--48},
publisher = {mathdoc},
number = {7},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a3/}
}
TY - JOUR AU - A. V. Lapin AU - D. G. Zalyalov TI - Penalty method for the state equation for an elliptical optimal control problem JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 36 EP - 48 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_7_a3/ LA - ru ID - IVM_2015_7_a3 ER -
A. V. Lapin; D. G. Zalyalov. Penalty method for the state equation for an elliptical optimal control problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 36-48. http://geodesic.mathdoc.fr/item/IVM_2015_7_a3/