Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_7_a2, author = {A. A. Kosov}, title = {Investigation of convergence of large scale almost periodic systems by means of comparison vector functions with components as forms of even degrees}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {25--35}, publisher = {mathdoc}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a2/} }
TY - JOUR AU - A. A. Kosov TI - Investigation of convergence of large scale almost periodic systems by means of comparison vector functions with components as forms of even degrees JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 25 EP - 35 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_7_a2/ LA - ru ID - IVM_2015_7_a2 ER -
%0 Journal Article %A A. A. Kosov %T Investigation of convergence of large scale almost periodic systems by means of comparison vector functions with components as forms of even degrees %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 25-35 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_7_a2/ %G ru %F IVM_2015_7_a2
A. A. Kosov. Investigation of convergence of large scale almost periodic systems by means of comparison vector functions with components as forms of even degrees. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 25-35. http://geodesic.mathdoc.fr/item/IVM_2015_7_a2/
[1] Zubov V. I., “O periodicheskikh i pochti-periodicheskikh vynuzhdennykh kolebaniyakh, voznikayuschikh pod deistviem vneshnei sily”, Izv. vuzov. Matem., 1960, no. 6, 93–102 | MR | Zbl
[2] Zubov V. I., Kolebaniya v nelineinykh i upravlyaemykh sistemakh, Sudpromgiz, L., 1962 | MR
[3] Pliss V. A., Nelokalnye problemy teorii kolebanii, Nauka, M., 1964 | MR
[4] Demidovich B. P., Lektsii po matematicheskoi teorii ustoichivosti, Nauka, M., 1967 | MR
[5] Yoshizawa T., Stability theory and the existence of periodical solutions and almost periodical solutions, Appl. Math. Sci., 14, Springer-Verlag, New York, 1975 | MR
[6] Matrosov V. M., Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2001
[7] Matrosov V. M., “Printsip sravneniya s vektor-funktsiei Lyapunova. IV”, Differents. uravneniya, 5:12 (1969), 2129–2143 | MR | Zbl
[8] Matrosov V. M., “Metod vektornykh funktsii Lyapunova v sistemakh s obratnoi svyazyu”, Avtomatika i telemekhanika, 1972, no. 9, 63–75 | MR | Zbl
[9] Schennikov V. N., “Issledovanie konvergentsii v neavtonomnoi differentsialnoi sisteme s pomoschyu vektor-funktsii Lyapunova”, Differents. uravneniya, 19:11 (1983), 1902–1907 | MR
[10] Schennikov V. N., “Yavlenie konvergentsii slozhnykh sistem differentsialnykh uravnenii”, Differents. uravneniya, 20:9 (1984), 1566–1571 | MR
[11] Vasilev S. N., “Metod reduktsii i kachestvennyi analiz dinamicheskikh sistem. I”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2006, no. 1, 21–29
[12] Vasilev S. N., “Metod reduktsii i kachestvennyi analiz dinamicheskikh sistem. II”, Izv. RAN. Ser. Teoriya i sistemy upravleniya, 2006, no. 2, 5–17 | Zbl
[13] Malikov A. I., “Matrichnye sistemy differentsialnykh uravnenii s usloviem kvazimonotonnosti”, Izv. vuzov. Matem., 2000, no. 8, 35–45 | MR | Zbl
[14] Malikov A. I., “Ellipsoidalnoe otsenivanie reshenii differentsialnykh uravnenii s pomoschyu matrichnykh sistem sravneniya”, Izv. vuzov. Matem., 2002, no. 8, 30–42 | MR | Zbl
[15] Corduneanu C., “Some comments on almost periodicity and related topics”, Commun. Math. Anal., 8:2 (2010), 5–15 | MR | Zbl
[16] Kosov A. A., “O konvergentsii v pochti periodicheskikh sistemakh”, 5-ya konf. molodykh uchenykh vuzov Irkutskoi obl., Ch. 1, Irkutsk, 1987, 17
[17] Siljak D. D., Large-scale dynamic systems: stability and structure, Elsevier/North-Holland, New York, 1978 | MR
[18] Aminov A. B., Sirazetdinov T. K., “Usloviya znakoopredelennosti chetnykh form i ustoichivost v tselom nelineinykh odnorodnykh sistem”, Prikl. matem. i mekhan., 48:3 (1984), 339–347 | MR | Zbl
[19] Morozov M. V., “Algoritm analiza robastnoi ustoichivosti nepreryvnykh sistem upravleniya s periodicheskimi ogranicheniyami”, Probl. upravleniya, 2014, no. 2, 26–31
[20] Kozlov R. I., Teoriya sistem sravneniya v metode vektornykh funktsii Lyapunova, Nauka, Novosibirsk, 2001 | MR
[21] Zubov V. I., Matematicheskie metody issledovaniya sistem avtomaticheskogo regulirovaniya, Mashinostroenie, L., 1974
[22] Krasovskii N. N., Nekotorye zadachi teorii ustoichivosti dvizheniya, Fizmatgiz, M., 1959 | MR
[23] Matrosov V. M., Kozlov R. I., Matrosova N. I., Teoriya ustoichivosti mnogokomponentnykh nelineinykh sistem, Ucheb. posobie, Fizmatlit, M., 2007
[24] Bailey F. N., “The application of Lyapunov's second methods to interconnected systems”, SIAM J. Control, 3:3 (1965), 443–462 | MR | Zbl
[25] Furasov V. D., Ustoichivost dvizheniya, otsenki i stabilizatsiya, Nauka, M., 1977 | MR
[26] Kosov A. A., “Kriterii suschestvovaniya obschei kvadratichnoi funktsii Lyapunova dlya mnozhestva lineinykh mekhanicheskikh sistem s odnoi stepenyu svobody”, Lyapunovskie chteniya prezentatsiya informatsionnykh tekhnologii, Materialy konf. (Irkutsk, 20–21 dekabrya 2010 g.), IDSTU SO RAN, Irkutsk, 2010, 23–24
[27] Gourdon E., Alexander N. A., Taylor C. A., Lamarque C.-H., Pernot S., “Nonlinear energy pumping under transient forcing with strongly nonlinear coupling: theoretical and experimental results”, J. Sound and Vibration, 300:3–5 (2007), 522–551 | DOI