Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_7_a1, author = {N. S. Kashtanov and A. V. Lapin}, title = {Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {10--24}, publisher = {mathdoc}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a1/} }
TY - JOUR AU - N. S. Kashtanov AU - A. V. Lapin TI - Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 10 EP - 24 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_7_a1/ LA - ru ID - IVM_2015_7_a1 ER -
%0 Journal Article %A N. S. Kashtanov %A A. V. Lapin %T Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 10-24 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_7_a1/ %G ru %F IVM_2015_7_a1
N. S. Kashtanov; A. V. Lapin. Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 10-24. http://geodesic.mathdoc.fr/item/IVM_2015_7_a1/
[1] Fortin M., Glowinski R., Augmented Lagrangian methods, Stud. Math. and Appl., 15, North-Holland, Amsterdam, 1983 | MR | Zbl
[2] Glowinski R., Le Tallec P., Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Stud. Appl. Math., 9, Philadelphia, PA, 1989 | MR | Zbl
[3] Badriev I. B., Zadvornov O. A., “A decomposition method for variational inequalities of the second kind with strongly inverse-monotone operators”, Diff. Equat., 39:7 (2003), 936–944 | DOI | MR | Zbl
[4] Badriev I. B., Zadvornov O. A., “On the convergence of the dual-type iterative method for mixed variational inequalities”, Diff. Equat., 42:8 (2006), 1180–1188 | DOI | MR | Zbl
[5] Lapin A., “Preconditioned Uzawa type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl
[6] Laitinen E., Lapin A., “Iterative solution methods for the large-scale constrained saddle point problems”, Numerical Methods for Diff. Equat., Optimization, and Technological Probl., Comp. Meth. Appl. Sci., 27, 2013, 19–39 | MR | Zbl
[7] Laitinen E., Lapin A., Lapin S., “Iterative solution methods for variational inequalities with nonlinear main operator and constraints to gradient of solution”, Lobachevskii J. Math., 33:4 (2012), 341–352 | DOI | MR | Zbl
[8] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR
[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR