Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 10-24.

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct and investigate a new iterative method for a finite dimensional constrained saddle point problem. The obtained results are applied to prove the convergence of different iterative methods for the mesh approximations of variational inequalities with constraints to the gradient of a solution. In particular, we prove the convergence of two-stage iterative methods. The main advantage of the proposed methods is the simplicity of their implementation. The results of the numerical testing demonstrate high convergence rate.
Keywords: saddle point problem with constraints, variational inequality, finite difference approximation, iterative methods.
@article{IVM_2015_7_a1,
     author = {N. S. Kashtanov and A. V. Lapin},
     title = {Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {10--24},
     publisher = {mathdoc},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a1/}
}
TY  - JOUR
AU  - N. S. Kashtanov
AU  - A. V. Lapin
TI  - Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 10
EP  - 24
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_7_a1/
LA  - ru
ID  - IVM_2015_7_a1
ER  - 
%0 Journal Article
%A N. S. Kashtanov
%A A. V. Lapin
%T Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 10-24
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_7_a1/
%G ru
%F IVM_2015_7_a1
N. S. Kashtanov; A. V. Lapin. Effectively implementable iterative methods for the linear elliptic variational inequalities with constraints to the gradient of solution. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 10-24. http://geodesic.mathdoc.fr/item/IVM_2015_7_a1/

[1] Fortin M., Glowinski R., Augmented Lagrangian methods, Stud. Math. and Appl., 15, North-Holland, Amsterdam, 1983 | MR | Zbl

[2] Glowinski R., Le Tallec P., Augmented Lagrangian and operator-splitting methods in nonlinear mechanics, SIAM Stud. Appl. Math., 9, Philadelphia, PA, 1989 | MR | Zbl

[3] Badriev I. B., Zadvornov O. A., “A decomposition method for variational inequalities of the second kind with strongly inverse-monotone operators”, Diff. Equat., 39:7 (2003), 936–944 | DOI | MR | Zbl

[4] Badriev I. B., Zadvornov O. A., “On the convergence of the dual-type iterative method for mixed variational inequalities”, Diff. Equat., 42:8 (2006), 1180–1188 | DOI | MR | Zbl

[5] Lapin A., “Preconditioned Uzawa type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl

[6] Laitinen E., Lapin A., “Iterative solution methods for the large-scale constrained saddle point problems”, Numerical Methods for Diff. Equat., Optimization, and Technological Probl., Comp. Meth. Appl. Sci., 27, 2013, 19–39 | MR | Zbl

[7] Laitinen E., Lapin A., Lapin S., “Iterative solution methods for variational inequalities with nonlinear main operator and constraints to gradient of solution”, Lobachevskii J. Math., 33:4 (2012), 341–352 | DOI | MR | Zbl

[8] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[9] Ekland I., Temam R., Vypuklyi analiz i variatsionnye problemy, Mir, M., 1979 | MR