On differential-geometric structures on a manifold of nonholonomic $(n+1)$-web
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 3-9
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider nonholonomic $(n+1)$-web $NW$ consisting of $n+1$ distributions of codimension $1$ on $n$-dimensional manifold $M$. We prove that an invariant pencil of projective connections exists on the manifold $M$. A unique curvilinear $(n+1)$-web corresponds to the ordered nonholonomic $(n+1)$-web and vice versa. The correspondence is defined by the polarity with respect to an invariant multilinear $n$-form or barycentric subdivision of an $(n+1)$-dimensional simplex. In conclusion we consider nonholonomic $(n+1)$-webs in affine space. The invariant pencil of affine connections is generated by every affine web. We also consider the case when the connections of the pencil are projective.
Keywords:
nonholonomic $(n+1)$-web, curvilinear $(n+1)$-web, affine connection, affine nonholonomic $(n+1)$-web, projective connections, geodesic line.
@article{IVM_2015_7_a0,
author = {M. I. Kabanova},
title = {On differential-geometric structures on a~manifold of nonholonomic $(n+1)$-web},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--9},
year = {2015},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a0/}
}
M. I. Kabanova. On differential-geometric structures on a manifold of nonholonomic $(n+1)$-web. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2015_7_a0/
[1] Kabanova M. I., “$\lambda E$-struktury”, Tr. mezhdunar. geom. tsentra, 5:1 (2012), 25–30
[2] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. geom. semin., 1, 1966, 139–189 | MR | Zbl
[3] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR
[4] Voskanyan V. K., “Krivolineinye $(n + 1)$-tkani na mnogoobrazii $M^n$”, Mezhvuz. sb. nauch. tr. Matem., 3, 1985, 163–175 | MR | Zbl
[5] Savelov A. A., Ploskie krivye: sistematika, svoistva, primeneniya, Spravochnoe rukovodstvo, 3-e izd., Editorial URSS, M., 2010
[6] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Izd-vo Kazansk. un-ta, Kazan, 1962 | MR