On differential-geometric structures on a~manifold of nonholonomic $(n+1)$-web
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 3-9.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider nonholonomic $(n+1)$-web $NW$ consisting of $n+1$ distributions of codimension $1$ on $n$-dimensional manifold $M$. We prove that an invariant pencil of projective connections exists on the manifold $M$. A unique curvilinear $(n+1)$-web corresponds to the ordered nonholonomic $(n+1)$-web and vice versa. The correspondence is defined by the polarity with respect to an invariant multilinear $n$-form or barycentric subdivision of an $(n+1)$-dimensional simplex. In conclusion we consider nonholonomic $(n+1)$-webs in affine space. The invariant pencil of affine connections is generated by every affine web. We also consider the case when the connections of the pencil are projective.
Keywords: nonholonomic $(n+1)$-web, curvilinear $(n+1)$-web, affine connection, affine nonholonomic $(n+1)$-web, projective connections, geodesic line.
@article{IVM_2015_7_a0,
     author = {M. I. Kabanova},
     title = {On differential-geometric structures on a~manifold of nonholonomic $(n+1)$-web},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--9},
     publisher = {mathdoc},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_7_a0/}
}
TY  - JOUR
AU  - M. I. Kabanova
TI  - On differential-geometric structures on a~manifold of nonholonomic $(n+1)$-web
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 3
EP  - 9
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_7_a0/
LA  - ru
ID  - IVM_2015_7_a0
ER  - 
%0 Journal Article
%A M. I. Kabanova
%T On differential-geometric structures on a~manifold of nonholonomic $(n+1)$-web
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 3-9
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_7_a0/
%G ru
%F IVM_2015_7_a0
M. I. Kabanova. On differential-geometric structures on a~manifold of nonholonomic $(n+1)$-web. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 7 (2015), pp. 3-9. http://geodesic.mathdoc.fr/item/IVM_2015_7_a0/

[1] Kabanova M. I., “$\lambda E$-struktury”, Tr. mezhdunar. geom. tsentra, 5:1 (2012), 25–30

[2] Laptev G. F., “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. geom. semin., 1, 1966, 139–189 | MR | Zbl

[3] Norden A. P., Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR

[4] Voskanyan V. K., “Krivolineinye $(n + 1)$-tkani na mnogoobrazii $M^n$”, Mezhvuz. sb. nauch. tr. Matem., 3, 1985, 163–175 | MR | Zbl

[5] Savelov A. A., Ploskie krivye: sistematika, svoistva, primeneniya, Spravochnoe rukovodstvo, 3-e izd., Editorial URSS, M., 2010

[6] Kartan E., Prostranstva affinnoi, proektivnoi i konformnoi svyaznosti, Izd-vo Kazansk. un-ta, Kazan, 1962 | MR