Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_6_a6, author = {D. S. Chistyakov}, title = {Separable torsion-free modules with $UA$-rings of endomorphisms}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {53--59}, publisher = {mathdoc}, number = {6}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_6_a6/} }
D. S. Chistyakov. Separable torsion-free modules with $UA$-rings of endomorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 53-59. http://geodesic.mathdoc.fr/item/IVM_2015_6_a6/
[1] Fuchs P., Maxson C. J., Pilz G., “On rings for which homogeneous maps are linear”, Proc. Amer. Math. Soc., 112:1 (1991), 1–7 | DOI | MR | Zbl
[2] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135(177):2 (1988), 210–224 | MR | Zbl
[3] Stephenson W., “Unique addition rings”, Can. J. Math., 21:6 (1969), 1455–1461 | DOI | MR | Zbl
[4] Neluis Chr.-F., Ringe mit eindentinger addition, Paderborn, 1974
[5] van der Merwe A. B., “Unique addition modules”, Comm. Algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl
[6] Lyubimtsev O. V., “Periodic Abelian groups with $UA$-rings of endomorphisms”, Math. Notes, 70:5–6 (2001), 667–672 | DOI | MR | Zbl
[7] Lyubimtsev O. V., “Separable torsion-free Abelian groups with $UA$-rings of endomorphisms”, Fundam. Prikl. Mat., 4:4 (1998), 1419–1422 | MR | Zbl
[8] Lyubimtsev O. V., Chistyakov D. S., “Abelevy gruppy kak UA-moduli nad koltsom $\mathbb Z$”, Matem. zametki, 87:3 (2010), 412–416 | DOI | MR | Zbl
[9] Chistyakov D. S., “Abelevy gruppy kak $UA$-moduli nad svoim koltsom endomorfizmov”, Matem. zametki, 91:6 (2012), 934–941 | DOI | MR | Zbl
[10] Chistyakov D. S., “Odnorodnye otobrazheniya abelevykh grupp”, Izv. vuzov. Matem., 2014, no. 2, 61–68 | Zbl
[11] Hausen J., Johnson J. A., “Centralizer near-rings that are rings”, J. Austral. Math. Soc., 59:2 (1995), 173–183 | DOI | MR | Zbl