Separable torsion-free modules with $UA$-rings of endomorphisms
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 53-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we study a property of unique addition for an endomorphisms ring of torsion-free separable module over commutative Dedekind ring.
Keywords: ring with unique addition, torsion-free separable module.
@article{IVM_2015_6_a6,
     author = {D. S. Chistyakov},
     title = {Separable torsion-free modules with $UA$-rings of endomorphisms},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {53--59},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_6_a6/}
}
TY  - JOUR
AU  - D. S. Chistyakov
TI  - Separable torsion-free modules with $UA$-rings of endomorphisms
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 53
EP  - 59
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_6_a6/
LA  - ru
ID  - IVM_2015_6_a6
ER  - 
%0 Journal Article
%A D. S. Chistyakov
%T Separable torsion-free modules with $UA$-rings of endomorphisms
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 53-59
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_6_a6/
%G ru
%F IVM_2015_6_a6
D. S. Chistyakov. Separable torsion-free modules with $UA$-rings of endomorphisms. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 53-59. http://geodesic.mathdoc.fr/item/IVM_2015_6_a6/

[1] Fuchs P., Maxson C. J., Pilz G., “On rings for which homogeneous maps are linear”, Proc. Amer. Math. Soc., 112:1 (1991), 1–7 | DOI | MR | Zbl

[2] Mikhalev A. V., “Multiplikativnaya klassifikatsiya assotsiativnykh kolets”, Matem. sb., 135(177):2 (1988), 210–224 | MR | Zbl

[3] Stephenson W., “Unique addition rings”, Can. J. Math., 21:6 (1969), 1455–1461 | DOI | MR | Zbl

[4] Neluis Chr.-F., Ringe mit eindentinger addition, Paderborn, 1974

[5] van der Merwe A. B., “Unique addition modules”, Comm. Algebra, 27:9 (1999), 4103–4115 | DOI | MR | Zbl

[6] Lyubimtsev O. V., “Periodic Abelian groups with $UA$-rings of endomorphisms”, Math. Notes, 70:5–6 (2001), 667–672 | DOI | MR | Zbl

[7] Lyubimtsev O. V., “Separable torsion-free Abelian groups with $UA$-rings of endomorphisms”, Fundam. Prikl. Mat., 4:4 (1998), 1419–1422 | MR | Zbl

[8] Lyubimtsev O. V., Chistyakov D. S., “Abelevy gruppy kak UA-moduli nad koltsom $\mathbb Z$”, Matem. zametki, 87:3 (2010), 412–416 | DOI | MR | Zbl

[9] Chistyakov D. S., “Abelevy gruppy kak $UA$-moduli nad svoim koltsom endomorfizmov”, Matem. zametki, 91:6 (2012), 934–941 | DOI | MR | Zbl

[10] Chistyakov D. S., “Odnorodnye otobrazheniya abelevykh grupp”, Izv. vuzov. Matem., 2014, no. 2, 61–68 | Zbl

[11] Hausen J., Johnson J. A., “Centralizer near-rings that are rings”, J. Austral. Math. Soc., 59:2 (1995), 173–183 | DOI | MR | Zbl