Initial-boundary problem for parabolic-hyperbolic equation with loaded summands
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 31-42.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we find necessary and sufficient conditions for uniqueness of a solution to initial-boundary problem for a loaded equation of mixed parabolic-hyperbolic type. The solution is constructed in the form of sums of a series in eigenfunctions of the corresponding one-dimensional problem on eigenvalues. At a substantiation of convergence of series arises the problem of small denominators. Under certain conditions on these data we obtain an estimation of separation from scratch small denominator that has allowed to prove the existence theorem in the class of regular solutions.
Keywords: equation of mixed type with loaded summands, initial-boundary problem, uniqueness, stability.
Mots-clés : existence
@article{IVM_2015_6_a4,
     author = {K. B. Sabitov},
     title = {Initial-boundary problem for parabolic-hyperbolic equation with loaded summands},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--42},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_6_a4/}
}
TY  - JOUR
AU  - K. B. Sabitov
TI  - Initial-boundary problem for parabolic-hyperbolic equation with loaded summands
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 31
EP  - 42
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_6_a4/
LA  - ru
ID  - IVM_2015_6_a4
ER  - 
%0 Journal Article
%A K. B. Sabitov
%T Initial-boundary problem for parabolic-hyperbolic equation with loaded summands
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 31-42
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_6_a4/
%G ru
%F IVM_2015_6_a4
K. B. Sabitov. Initial-boundary problem for parabolic-hyperbolic equation with loaded summands. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 31-42. http://geodesic.mathdoc.fr/item/IVM_2015_6_a4/

[1] Sabitov K. B., “Zadacha Trikomi dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Matem. zametki, 86:2 (2009), 273–279 | DOI | MR | Zbl

[2] Sabitov K. B., “Nelokalnaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Matem. zametki, 89:4 (2011), 596–602 | DOI | MR | Zbl

[3] Sabitov K. B., “Nachalno-granichnaya zadacha dlya nagruzhennogo uravneniya parabolo-giperbolicheskogo tipa”, Dokl. AMAN (Nalchik), 11:1 (2009), 66–73 | MR

[4] Nakhushev A. M., “Nagruzhennye uravneniya i ikh prilozheniya”, Differents. uravneniya, 19:1 (1983), 86–94 | MR | Zbl

[5] Nakhushev A. M., Nagruzhennye uravneniya i ikh primenenie, Nauka, M., 2012

[6] Dzhenaliev M. T., K teorii lineinykh kraevykh zadach dlya nagruzhennykh differentsialnykh uravnenii, Almaty, 1995

[7] Pulkina L. S., “Nelokalnaya zadacha dlya nagruzhennogo giperbolicheskogo uravneniya”, Tr. MIAN im. V. A. Steklova, 236, 2002, 298–303 | MR | Zbl

[8] Kozhanov A. I., “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zhurn. vychisl. matem. i matem. fiz., 44:4 (2004), 694–716 | MR | Zbl

[9] Khubiev K. U., Lokalnye i nelokalnye kraevye zadachi dlya nagruzhennykh uravnenii smeshannogo tipa, Avtoreferat diss. $\dots$ kand. fiz.-matem. nauk, Belgorod, 2009

[10] Sabitov K. B., Melisheva E. P., “Zadacha Dirikhle dlya nagruzhennogo uravneniya smeshannogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2013, no. 7, 62–76 | Zbl

[11] Ilin V. A., Poznyak E. G., Osnovy matematicheskogo analiza, Ch. I, Fizmatlit, M., 1982

[12] Arnold V. I., “Malye znamenateli i problemy ustoichivosti dvizheniya v klassicheskoi i nebesnoi mekhanike”, UMN, 18:6 (1963), 91–192 | MR | Zbl

[13] Sabitov K. B., “Kraevaya zadacha dlya uravneniya parabolo-giperbolicheskogo tipa s nelokalnym integralnym usloviem”, Differents. uravneniya, 46:10 (2010), 1468–1478 | MR | Zbl