On compact distribution of two-particle Schr\"odinger operator on a~lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 24-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a system of two arbitrary quantum particles on three-dimensional lattice with certain dispersion functions (they describe a transfer of a particle from one node to another) which with the help of gravity potential interact on nearest neighboring nodes, only. We find a class of potentials such that under perturbation of two-particle operator $h(k)$, which corresponds to a system of two particles with a potential from this class, a discrete operator $h(k)$ is kept.
Keywords: two-particle Hamiltonian on a lattice, virtual level, multiplicity of virtual level, eigenvalue, discrete spectrum.
@article{IVM_2015_6_a3,
     author = {M. I. Muminov and A. M. Khurramov},
     title = {On compact distribution of two-particle {Schr\"odinger} operator on a~lattice},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {24--30},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_6_a3/}
}
TY  - JOUR
AU  - M. I. Muminov
AU  - A. M. Khurramov
TI  - On compact distribution of two-particle Schr\"odinger operator on a~lattice
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 24
EP  - 30
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_6_a3/
LA  - ru
ID  - IVM_2015_6_a3
ER  - 
%0 Journal Article
%A M. I. Muminov
%A A. M. Khurramov
%T On compact distribution of two-particle Schr\"odinger operator on a~lattice
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 24-30
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_6_a3/
%G ru
%F IVM_2015_6_a3
M. I. Muminov; A. M. Khurramov. On compact distribution of two-particle Schr\"odinger operator on a~lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 24-30. http://geodesic.mathdoc.fr/item/IVM_2015_6_a3/

[1] Faddeev L. D., Matematicheskie voprosy kvantovoi teorii rasseyaniya dlya sistemy trekh chastits, Tr. matem. in-ta im. V. A. Steklova, 69, 1963 | MR | Zbl

[2] Mattis D. C., “The few-body problem on lattice”, Rew. mod. Phys., 58 (1986), 361–379 | DOI | MR

[3] Albeverio S., Lakaev S. N., Makarov K. A., Muminov Z. I., “The threshold effects for the two-particle Hamiltonians”, Commun. Math. Phys., 262 (2006), 91–115 | DOI | MR | Zbl

[4] Yafaev D. P., “K teopii diskpetnogo spektpa tpekhchastichnogo opepatopa Shpëdingepa”, Matem. sb., 94(136):4 (1974), 567–593 | MR | Zbl

[5] Sobolev A. V., “The Efimov effect. Discrete spectrum. Asymptotics”, Commun. Math. Phys., 156 (1993), 101–126 | DOI | MR | Zbl

[6] Yafaev D. R., “O konechnosti diskretnogo spektra trekhchastichnogo operatora Shrëdingera”, Teor. matem. fiz., 25:2 (1975), 185–195 | MR | Zbl

[7] Vugalter S. A., Zhislin G. M., “O spektre operatorov Shrëdingera mnogochastichnykh sistem s korotkodeistvuyuschimi potentsialami”, Tr. MMO, 49, Izd-vo Moskovsk. un-ta, M., 1986, 95–112 | MR | Zbl

[8] Zhislin G. M., “O virtualnykh urovnyakh $n$-chastichnykh sistem”, Teor. matem. fiz., 68:2 (1986), 265–275 | MR

[9] Lakaev S. N., Tilavova Sh. M., “Sliyanie sobstvennykh znachenii i rezonansov dvukhchastichnogo operatora Shrëdingera”, Teor. matem. fiz., 101:2 (1994), 235–252 | MR | Zbl

[10] Abdullaev Zh. I., Lakaev S. N., “Konechnost diskretnogo spektra trekhchastichnogo operatora Shrëdingera na reshetke”, Teor. matem. fiz., 111:1 (1997), 94–108 | DOI | MR | Zbl

[11] Lakaev S. N., Bozorov I. N., “Chislo svyazannykh sostoyanii odnochastichnogo gamiltoniana na trekhmernoi reshetke”, Teor. matem. fiz., 158:3 (2009), 425–443 | DOI | MR | Zbl

[12] Muminov M. E., Khurramov A. M., “Spektralnye svoistva dvukhchastichnogo gamiltoniana na reshetke”, Teor. matem. fiz., 177:3 (2013), 482–496 | DOI | Zbl

[13] Rid M., Saimon B., Metody sovpemennoi matematicheskoi fiziki, v. 4, Analiz opepatopov, Mip, M., 1982