Biquandle invariants for links in the projective space
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 7-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of the projective biquandle (an object related to links in projective space). The paper is devoted to the proof that for any link in projective space the number of addmissible colorings by projective biquandle of its diagram is invariant.
Keywords: link, projective space.
Mots-clés : invariant, biquandle
@article{IVM_2015_6_a1,
     author = {D. V. Gorkovets},
     title = {Biquandle invariants for links in the projective space},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {7--13},
     year = {2015},
     number = {6},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_6_a1/}
}
TY  - JOUR
AU  - D. V. Gorkovets
TI  - Biquandle invariants for links in the projective space
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 7
EP  - 13
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_6_a1/
LA  - ru
ID  - IVM_2015_6_a1
ER  - 
%0 Journal Article
%A D. V. Gorkovets
%T Biquandle invariants for links in the projective space
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 7-13
%N 6
%U http://geodesic.mathdoc.fr/item/IVM_2015_6_a1/
%G ru
%F IVM_2015_6_a1
D. V. Gorkovets. Biquandle invariants for links in the projective space. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 7-13. http://geodesic.mathdoc.fr/item/IVM_2015_6_a1/

[1] Fenn R., Jordan-Santana M., Kauffman L., “Biquandles and virtual links”, Topology and its applications, 145:1–3 (2004), 157 | DOI | MR | Zbl

[2] Drobotukhina Yu. V., “Analog mnogochlena Dzhounsa dlya zatseplenii v $\mathbb{R}P^3$ i obobschenie teoremy Kauffmana–Murasugi”, Algebra i analiz, 2:3 (1990), 171–191 | MR | Zbl

[3] Nelson S., Vo J., Matrices and finite biquandles, arXiv: math/0601145[math.GT] | MR