About the number of models of theories of locally free algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 3-6.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the number of prime models over finite sets and of limit models for countable complete theories of locally free algebras.
Keywords: limit model, prime model, locally free algebra.
@article{IVM_2015_6_a0,
     author = {K. A. Baikalova},
     title = {About the number of models of theories of locally free algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--6},
     publisher = {mathdoc},
     number = {6},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_6_a0/}
}
TY  - JOUR
AU  - K. A. Baikalova
TI  - About the number of models of theories of locally free algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 3
EP  - 6
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_6_a0/
LA  - ru
ID  - IVM_2015_6_a0
ER  - 
%0 Journal Article
%A K. A. Baikalova
%T About the number of models of theories of locally free algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 3-6
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_6_a0/
%G ru
%F IVM_2015_6_a0
K. A. Baikalova. About the number of models of theories of locally free algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 6 (2015), pp. 3-6. http://geodesic.mathdoc.fr/item/IVM_2015_6_a0/

[1] Maltsev A. I., “Aksiomatiziruemye klassy lokalno svobodnykh algebr nekotorykh tipov”, Sib. matem. zhurn., 3:5 (1962), 729–743 | Zbl

[2] Belegradek O. V., “Teoriya modelei lokalno svobodnykh algebr”, Teoriya modelei i ee primeneniya, Nauka, Sib. otd., Novosibirsk, 1988, 3–25 | MR

[3] Sudoplatov S. V., Problema Lakhlana, Izd-vo NGTU, Novosibirsk, 2009