Criteria of embedding of classes of Morrey type
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 80-85.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that replacing Lebesgue's norm by Morrey's seminorm in the definition of functional classes, it is possible to obtain unimprovable theorems of embedding which are additional to classical theorems in case when they are not fulfilled.
Keywords: theorem of embedding, Morrey seminorm, Sobolev–Morrey class, Lorentz spaces.
Mots-clés : Lebesgue–Morrey class
@article{IVM_2015_5_a9,
     author = {N. Temirgaliev and M. A. Zhainibekova and G. T. Dzhumakaeva},
     title = {Criteria of embedding of classes of {Morrey} type},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {80--85},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a9/}
}
TY  - JOUR
AU  - N. Temirgaliev
AU  - M. A. Zhainibekova
AU  - G. T. Dzhumakaeva
TI  - Criteria of embedding of classes of Morrey type
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 80
EP  - 85
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a9/
LA  - ru
ID  - IVM_2015_5_a9
ER  - 
%0 Journal Article
%A N. Temirgaliev
%A M. A. Zhainibekova
%A G. T. Dzhumakaeva
%T Criteria of embedding of classes of Morrey type
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 80-85
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a9/
%G ru
%F IVM_2015_5_a9
N. Temirgaliev; M. A. Zhainibekova; G. T. Dzhumakaeva. Criteria of embedding of classes of Morrey type. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 80-85. http://geodesic.mathdoc.fr/item/IVM_2015_5_a9/

[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[2] Morrey C. B., “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43 (1938), 126–166 | DOI | MR | Zbl

[3] Dzhumakaeva G. T., “Kriterii vlozheniya klassa Soboleva–Morri $W_{p,\Phi}^l$ v prostranstvo $C$”, Matem. zametki, 37:3 (1985), 399–406 | MR | Zbl

[4] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[5] Dzhumakaeva G. T., Nauryzbaev K. Zh., “O prostranstvakh Lebega–Morri”, Izv. AN KazSSR. Ser. fiz.-matem., 1982, no. 5, 7–12 | MR | Zbl

[6] Yuan Wen, Sickel W., Yang Dachun, Morrey and Campanato meet Besov, Lizorkin and Triebel, Lecture Notes in Math., 2005, Springer-Verlag, Berlin, 2010 | DOI | MR | Zbl

[7] $8$th International conference on function spaces, differential operators, nonlinear analysis, FSDONA-2011 (September 18–24, 2011, Tabarz/Thuringia, Germany), 2011

[8] Ilin V. P., “O nekotorykh svoistvakh funktsii iz prostranstv $W_{p,a,\aleph}^l(\mathfrak R)$”, Zap. nauch. semin. LOMI AN SSSR, 23, 1971, 33–40 | Zbl

[9] Ulyanov P. L., “Vlozhenie nekotorykh klassov funktsii $H_p^\omega$”, Izv. AN SSSR. Ser. matem., 32:3 (1968), 649–686 | MR | Zbl

[10] Temirgaliev N., “O vlozhenii klassov $H_p^\omega$ v prostranstva Lorentsa”, Sib. matem. zhurn., 24:2 (1983), 160–172 | MR | Zbl