Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_5_a8, author = {D. M. Polyakov}, title = {On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {75--79}, publisher = {mathdoc}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/} }
TY - JOUR AU - D. M. Polyakov TI - On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 75 EP - 79 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/ LA - ru ID - IVM_2015_5_a8 ER -
%0 Journal Article %A D. M. Polyakov %T On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 75-79 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/ %G ru %F IVM_2015_5_a8
D. M. Polyakov. On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/
[1] Badanin A. V., Korotyaev E. L., “Spektralnye otsenki dlya periodicheskogo operatora chetvertogo poryadka”, Algebra i analiz, 22:5 (2010), 1–48 | MR | Zbl
[2] Badanin A., Korotyaev E., Sharp spectral asymptotics for fourth order operators on the unit interval, arXiv: 1309.3447
[3] Veliev O. A., “On the nonself-adjoint ordinary differential operators with periodic boundary conditions”, Israel J. Math., 176 (2010), 195–207 | DOI | MR | Zbl
[4] Mikhailets V., Molyboga V., “Uniform estimates for the semi-periodic eigenvalues of the singular differential operators”, Methods Funct. Anal. Topology, 10:4 (2004), 30–57 | MR | Zbl
[5] Molyboga V., “Estimates for periodic eigenvalues of the differential operator $(-1)^md^{2m}/dx^{2m}+V$ with $V$-distribution”, Methods Funct. Anal. Topology, 9:2 (2003), 163–178 | MR | Zbl
[6] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”: Voitovich N. N., Katselembaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR
[7] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. matem. zhurn., 24:1 (1983), 21–39 | MR | Zbl
[8] Baskakov A. G., “Spektralnyi analiz vozmuschënnykh nekvazianaliticheskikh i spektralnykh operatorov”, Izv. RAN. Cer. matem., 58:4 (1994), 3–32 | MR | Zbl
[9] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. matem., 75:3 (2011), 3–28 | DOI | MR | Zbl
[10] Polyakov D. M., “Spektralnye svoistva differentsialnogo operatora chetvertogo poryadka”, Vestnik VGU. Ser. fiz.-matem., 2012, no. 1, 179–181