On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 75-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the use of similar operator method, in this paper we study spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions. We obtain asymptotic of a spectrum and estimates of spectral decompositions. We also construct a semigroup of operators which has the opposite differential operator as a generator.
Keywords: fourth order differential operator, method of similar operators, spectrum.
@article{IVM_2015_5_a8,
     author = {D. M. Polyakov},
     title = {On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--79},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/}
}
TY  - JOUR
AU  - D. M. Polyakov
TI  - On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 75
EP  - 79
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/
LA  - ru
ID  - IVM_2015_5_a8
ER  - 
%0 Journal Article
%A D. M. Polyakov
%T On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 75-79
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/
%G ru
%F IVM_2015_5_a8
D. M. Polyakov. On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/

[1] Badanin A. V., Korotyaev E. L., “Spektralnye otsenki dlya periodicheskogo operatora chetvertogo poryadka”, Algebra i analiz, 22:5 (2010), 1–48 | MR | Zbl

[2] Badanin A., Korotyaev E., Sharp spectral asymptotics for fourth order operators on the unit interval, arXiv: 1309.3447

[3] Veliev O. A., “On the nonself-adjoint ordinary differential operators with periodic boundary conditions”, Israel J. Math., 176 (2010), 195–207 | DOI | MR | Zbl

[4] Mikhailets V., Molyboga V., “Uniform estimates for the semi-periodic eigenvalues of the singular differential operators”, Methods Funct. Anal. Topology, 10:4 (2004), 30–57 | MR | Zbl

[5] Molyboga V., “Estimates for periodic eigenvalues of the differential operator $(-1)^md^{2m}/dx^{2m}+V$ with $V$-distribution”, Methods Funct. Anal. Topology, 9:2 (2003), 163–178 | MR | Zbl

[6] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”: Voitovich N. N., Katselembaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR

[7] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. matem. zhurn., 24:1 (1983), 21–39 | MR | Zbl

[8] Baskakov A. G., “Spektralnyi analiz vozmuschënnykh nekvazianaliticheskikh i spektralnykh operatorov”, Izv. RAN. Cer. matem., 58:4 (1994), 3–32 | MR | Zbl

[9] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. matem., 75:3 (2011), 3–28 | DOI | MR | Zbl

[10] Polyakov D. M., “Spektralnye svoistva differentsialnogo operatora chetvertogo poryadka”, Vestnik VGU. Ser. fiz.-matem., 2012, no. 1, 179–181