On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 75-79.

Voir la notice de l'article provenant de la source Math-Net.Ru

With the use of similar operator method, in this paper we study spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions. We obtain asymptotic of a spectrum and estimates of spectral decompositions. We also construct a semigroup of operators which has the opposite differential operator as a generator.
Keywords: fourth order differential operator, method of similar operators, spectrum.
@article{IVM_2015_5_a8,
     author = {D. M. Polyakov},
     title = {On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {75--79},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/}
}
TY  - JOUR
AU  - D. M. Polyakov
TI  - On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 75
EP  - 79
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/
LA  - ru
ID  - IVM_2015_5_a8
ER  - 
%0 Journal Article
%A D. M. Polyakov
%T On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 75-79
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/
%G ru
%F IVM_2015_5_a8
D. M. Polyakov. On spectral properties of fourth order differential operator with periodic and semiperiodic boundary conditions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 75-79. http://geodesic.mathdoc.fr/item/IVM_2015_5_a8/

[1] Badanin A. V., Korotyaev E. L., “Spektralnye otsenki dlya periodicheskogo operatora chetvertogo poryadka”, Algebra i analiz, 22:5 (2010), 1–48 | MR | Zbl

[2] Badanin A., Korotyaev E., Sharp spectral asymptotics for fourth order operators on the unit interval, arXiv: 1309.3447

[3] Veliev O. A., “On the nonself-adjoint ordinary differential operators with periodic boundary conditions”, Israel J. Math., 176 (2010), 195–207 | DOI | MR | Zbl

[4] Mikhailets V., Molyboga V., “Uniform estimates for the semi-periodic eigenvalues of the singular differential operators”, Methods Funct. Anal. Topology, 10:4 (2004), 30–57 | MR | Zbl

[5] Molyboga V., “Estimates for periodic eigenvalues of the differential operator $(-1)^md^{2m}/dx^{2m}+V$ with $V$-distribution”, Methods Funct. Anal. Topology, 9:2 (2003), 163–178 | MR | Zbl

[6] Agranovich M. S., “Spektralnye svoistva zadach difraktsii”: Voitovich N. N., Katselembaum B. Z., Sivov A. N., Obobschennyi metod sobstvennykh kolebanii v teorii difraktsii, Nauka, M., 1977, 289–416 | MR

[7] Baskakov A. G., “Metody abstraktnogo garmonicheskogo analiza v teorii vozmuschenii lineinykh operatorov”, Sib. matem. zhurn., 24:1 (1983), 21–39 | MR | Zbl

[8] Baskakov A. G., “Spektralnyi analiz vozmuschënnykh nekvazianaliticheskikh i spektralnykh operatorov”, Izv. RAN. Cer. matem., 58:4 (1994), 3–32 | MR | Zbl

[9] Baskakov A. G., Derbushev A. V., Scherbakov A. O., “Metod podobnykh operatorov v spektralnom analize nesamosopryazhennogo operatora Diraka s negladkim potentsialom”, Izv. RAN. Ser. matem., 75:3 (2011), 3–28 | DOI | MR | Zbl

[10] Polyakov D. M., “Spektralnye svoistva differentsialnogo operatora chetvertogo poryadka”, Vestnik VGU. Ser. fiz.-matem., 2012, no. 1, 179–181