Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_5_a7, author = {A. M. Bikchentaev}, title = {Ideal $F$-norms on $C^*$-algebras}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {69--74}, publisher = {mathdoc}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a7/} }
A. M. Bikchentaev. Ideal $F$-norms on $C^*$-algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 69-74. http://geodesic.mathdoc.fr/item/IVM_2015_5_a7/
[1] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997
[2] Bikchentaev A. M., “Neravenstvo treugolnika dlya nekotorykh prostranstv izmerimykh operatorov”, Konstruktivnaya teoriya funktsii i funktsionalnyi analiz (Kazan), 1992, no. 8, 23–32 | MR | Zbl
[3] Bikchentaev A. M., “O minimalnosti topologii skhodimosti po mere na konechnykh algebrakh fon Neimana”, Matem. zametki, 75:3 (2004), 342–349 | DOI | MR | Zbl
[4] Bikchentaev A. M., “Operator blochnogo proektirovaniya v normirovannykh idealnykh prostranstvakh izmerimykh operatorov”, Izv. vuzov. Matem., 2012, no. 2, 86–91 | MR | Zbl
[5] Bikchentaev A. M., “O zadache Khaagerupa o subadditivnykh vesakh na $W^*$-algebrakh”, Izv. vuzov. Matem., 2011, no. 10, 94–98 | MR | Zbl
[6] Bikchentaev A. M., “O zadache Khaagerupa o subadditivnykh vesakh na $W^*$-algebrakh. II”, Izv. vuzov. Matem., 2013, no. 12, 72–76 | MR | Zbl
[7] Ströh A., Swart J., “Measures of noncompactness of operators in von Neumann algebras”, Indiana Univ. Math. J., 38:2 (1989), 365–375 | DOI | MR | Zbl
[8] Dixmier J., Les algebres d'opérateurs dans l'espace Hilbertien (algebres de von Neumann), 2nd ed., Gauthier-Villars, Paris, 1969 | MR
[9] Akemann C. A., Anderson J., Pedersen G. K., “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl
[10] Bikchentaev A. M., “On Hermitian operators $X$ and $Y$ meeting the condition $-Y\leq X\leq Y$”, Lobachevskii J. Math., 34:3 (2013), 227–233 | DOI | MR | Zbl