Ideal $F$-norms on $C^*$-algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 69-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

We show that every noncompactness measure on a $W^*$-algebra is an ideal $F$-pseudonorm. We establish the criterion of right Fredholm property of an element with respect to $W^*$-algebra. We prove that the element $-I$ realizes maximum distance from the positive element to the subset of all isometries of unital $C^*$-algebra, here $I$ is the unit of $C^*$-algebra. We also consider differences of two finite products of elements from the unit ball of $C^*$-algebra and obtain an estimate of their ideal $F$-pseudonorms. The paper is concluded with the convergence criterion in complete ideal $F$-norm for two series of elements from $W^*$-algebra.
Keywords: $C^*$-algebra, $W^*$-algebra, trace, Hilbert space, linear operator, Fredholm operator, isometry, unitary operator, compact operator, ideal, ideal $F$-norm, measure of noncompactness.
@article{IVM_2015_5_a7,
     author = {A. M. Bikchentaev},
     title = {Ideal $F$-norms on $C^*$-algebras},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {69--74},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a7/}
}
TY  - JOUR
AU  - A. M. Bikchentaev
TI  - Ideal $F$-norms on $C^*$-algebras
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 69
EP  - 74
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a7/
LA  - ru
ID  - IVM_2015_5_a7
ER  - 
%0 Journal Article
%A A. M. Bikchentaev
%T Ideal $F$-norms on $C^*$-algebras
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 69-74
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a7/
%G ru
%F IVM_2015_5_a7
A. M. Bikchentaev. Ideal $F$-norms on $C^*$-algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 69-74. http://geodesic.mathdoc.fr/item/IVM_2015_5_a7/

[1] Merfi Dzh., $C^*$-algebry i teoriya operatorov, Faktorial, M., 1997

[2] Bikchentaev A. M., “Neravenstvo treugolnika dlya nekotorykh prostranstv izmerimykh operatorov”, Konstruktivnaya teoriya funktsii i funktsionalnyi analiz (Kazan), 1992, no. 8, 23–32 | MR | Zbl

[3] Bikchentaev A. M., “O minimalnosti topologii skhodimosti po mere na konechnykh algebrakh fon Neimana”, Matem. zametki, 75:3 (2004), 342–349 | DOI | MR | Zbl

[4] Bikchentaev A. M., “Operator blochnogo proektirovaniya v normirovannykh idealnykh prostranstvakh izmerimykh operatorov”, Izv. vuzov. Matem., 2012, no. 2, 86–91 | MR | Zbl

[5] Bikchentaev A. M., “O zadache Khaagerupa o subadditivnykh vesakh na $W^*$-algebrakh”, Izv. vuzov. Matem., 2011, no. 10, 94–98 | MR | Zbl

[6] Bikchentaev A. M., “O zadache Khaagerupa o subadditivnykh vesakh na $W^*$-algebrakh. II”, Izv. vuzov. Matem., 2013, no. 12, 72–76 | MR | Zbl

[7] Ströh A., Swart J., “Measures of noncompactness of operators in von Neumann algebras”, Indiana Univ. Math. J., 38:2 (1989), 365–375 | DOI | MR | Zbl

[8] Dixmier J., Les algebres d'opérateurs dans l'espace Hilbertien (algebres de von Neumann), 2nd ed., Gauthier-Villars, Paris, 1969 | MR

[9] Akemann C. A., Anderson J., Pedersen G. K., “Triangle inequalities in operator algebras”, Linear Multilinear Algebra, 11:2 (1982), 167–178 | DOI | MR | Zbl

[10] Bikchentaev A. M., “On Hermitian operators $X$ and $Y$ meeting the condition $-Y\leq X\leq Y$”, Lobachevskii J. Math., 34:3 (2013), 227–233 | DOI | MR | Zbl