On a~third order equations with pseudoparabolic operator and with shift of arguments of sought-for function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 62-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a third order equation we consider three problems with normal derivatives in boundary conditions. For every of the problems we prove the existence of a unique reducibility to the Goursat problem.
Keywords: problem with shift of arguments of sought-for function, pseudoparabolic operator.
@article{IVM_2015_5_a6,
     author = {E. A. Utkina},
     title = {On a~third order equations with pseudoparabolic operator and with shift of arguments of sought-for function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {62--68},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a6/}
}
TY  - JOUR
AU  - E. A. Utkina
TI  - On a~third order equations with pseudoparabolic operator and with shift of arguments of sought-for function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 62
EP  - 68
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a6/
LA  - ru
ID  - IVM_2015_5_a6
ER  - 
%0 Journal Article
%A E. A. Utkina
%T On a~third order equations with pseudoparabolic operator and with shift of arguments of sought-for function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 62-68
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a6/
%G ru
%F IVM_2015_5_a6
E. A. Utkina. On a~third order equations with pseudoparabolic operator and with shift of arguments of sought-for function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 62-68. http://geodesic.mathdoc.fr/item/IVM_2015_5_a6/

[1] Nakhushev A. M., Uravneniya matematicheskoi biologii, Vyssh. shk., M., 1995

[2] Myshkis A. D., Lineinye differentsialnye uravneniya s zapazdyvayuschim argumentom, Nauka, M., 1972 | MR

[3] Myshkis A. D., “O nekotorykh problemakh teorii differentsialnykh uravnenii s otklonyayuschimsya argumentom”, UMN, 32:2 (1977), 173–202 | MR | Zbl

[4] Azbelev N. V., Rakhmatullina L. F., “Funktsionalno-differentsialnye uravneniya”, Differents. uravneniya, 14:5 (1978), 771–797 | MR | Zbl

[5] Kheili Dzh., Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR

[6] Mokeichev V. S., Differentsialnye uravneniya s otklonyayuschimsya argumentom, Izd-vo Kazansk. un-ta, Kazan, 1985

[7] Zarubin A. N., Uravneniya smeshannogo tipa s zapazdyvayuschim argumentom, Uchebnoe posobie, OGU, Orel, 1997

[8] Zhegalov V. I., “Kharakteristicheskaya granichnaya zadacha dlya giperbolicheskogo uravneniya so smescheniem argumentov iskomoi funktsii”, Dokl. RAN, 146:5 (2012), 490–493 | MR

[9] Andreev A. A., “Ob analogakh klassicheskikh kraevykh zadach dlya odnogo differentsialnogo uravneniya vtorogo poryadka s otklonyayuschimsya argumentom”, Differents. uravneniya, 40:5 (2004), 1126–1128 | Zbl

[10] Andreev A. A., Saushkin I. N., “Ob analoge zadachi Trikomi dlya odnogo modelnogo uravneniya s involyutivnym otkloneniem v beskonechnoi oblasti”, Vestn. Samarsk. gos. tekhn. un-ta. Ser. fiz.-matem. nauki, 34 (2005), 10–16 | DOI

[11] Zhegalov V. I., Utkina E. A., “Ob odnom psevdoparabolicheskom uravnenii tretego poryadka”, Izv. vuzov. Matem., 1999, no. 10, 73–76 | MR | Zbl

[12] Utkina E. A., Novye varianty kharakteristicheskikh zadach dlya psevdoparabolicheskikh uravnenii, Diss. $\dots$ kand. fiz.-matem. nauk, Kazansk. un-t, 1999

[13] Utkina E. A., “Kharakteristicheskaya granichnaya zadacha dlya uravneniya tretego poryadka s psevdoparabolicheskim operatorom i so smescheniem argumentov iskomoi funktsii”, Izv. vuzov. Matem., 2014, no. 2, 54–60 | MR | Zbl