Main metric invariants of finite metric spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 45-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper we obtain new main metric invariants of finite metric spaces. These invariants can be used for classification of the finite metric spaces and their recognition.
Keywords: finite metric space, metric invariant.
@article{IVM_2015_5_a4,
     author = {E. N. Sosov},
     title = {Main metric invariants of finite metric spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--48},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - Main metric invariants of finite metric spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 45
EP  - 48
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/
LA  - ru
ID  - IVM_2015_5_a4
ER  - 
%0 Journal Article
%A E. N. Sosov
%T Main metric invariants of finite metric spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 45-48
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/
%G ru
%F IVM_2015_5_a4
E. N. Sosov. Main metric invariants of finite metric spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 45-48. http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/

[1] Sosov E. N., “Otnositelnyi $N$-radius ogranichennogo mnozhestva metricheskogo prostranstva”, Uchen. zap. Kazansk. un-ta, 153, no. 4, 2011, 28–36 | Zbl

[2] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuternykh isledovanii, Moskva–Izhevsk, 2004

[3] Sosov E. N., “Otnositelnyi chebyshevskii tsentr konechnogo mnozhestva geodezicheskogo prostranstva”, Izv. vuzov. Matem., 2008, no. 4, 66–72 | MR | Zbl

[4] Rao T. S. S. R. K., “Chebyshev centres and centrable sets”, Proc. Amer. Math. Soc., 130:9 (2002), 2593–2598 | DOI | MR | Zbl

[5] Bandyopadhyay P., Dutta S., “Weighted Chebyshev centres and intersection properties of balls in Banach spaces”, Function spaces (Edwadswille, IL, 2002), Contemp. Math., 328, Amer. Math. Soc., Providence, RI, 2003, 43–58 | DOI | MR | Zbl