Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_5_a4, author = {E. N. Sosov}, title = {Main metric invariants of finite metric spaces}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {45--48}, publisher = {mathdoc}, number = {5}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/} }
E. N. Sosov. Main metric invariants of finite metric spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 45-48. http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/
[1] Sosov E. N., “Otnositelnyi $N$-radius ogranichennogo mnozhestva metricheskogo prostranstva”, Uchen. zap. Kazansk. un-ta, 153, no. 4, 2011, 28–36 | Zbl
[2] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuternykh isledovanii, Moskva–Izhevsk, 2004
[3] Sosov E. N., “Otnositelnyi chebyshevskii tsentr konechnogo mnozhestva geodezicheskogo prostranstva”, Izv. vuzov. Matem., 2008, no. 4, 66–72 | MR | Zbl
[4] Rao T. S. S. R. K., “Chebyshev centres and centrable sets”, Proc. Amer. Math. Soc., 130:9 (2002), 2593–2598 | DOI | MR | Zbl
[5] Bandyopadhyay P., Dutta S., “Weighted Chebyshev centres and intersection properties of balls in Banach spaces”, Function spaces (Edwadswille, IL, 2002), Contemp. Math., 328, Amer. Math. Soc., Providence, RI, 2003, 43–58 | DOI | MR | Zbl