Main metric invariants of finite metric spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 45-48 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we obtain new main metric invariants of finite metric spaces. These invariants can be used for classification of the finite metric spaces and their recognition.
Keywords: finite metric space, metric invariant.
@article{IVM_2015_5_a4,
     author = {E. N. Sosov},
     title = {Main metric invariants of finite metric spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--48},
     year = {2015},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/}
}
TY  - JOUR
AU  - E. N. Sosov
TI  - Main metric invariants of finite metric spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 45
EP  - 48
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/
LA  - ru
ID  - IVM_2015_5_a4
ER  - 
%0 Journal Article
%A E. N. Sosov
%T Main metric invariants of finite metric spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 45-48
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/
%G ru
%F IVM_2015_5_a4
E. N. Sosov. Main metric invariants of finite metric spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 45-48. http://geodesic.mathdoc.fr/item/IVM_2015_5_a4/

[1] Sosov E. N., “Otnositelnyi $N$-radius ogranichennogo mnozhestva metricheskogo prostranstva”, Uchen. zap. Kazansk. un-ta, 153, no. 4, 2011, 28–36 | Zbl

[2] Burago D. Yu., Burago Yu. D., Ivanov S. V., Kurs metricheskoi geometrii, In-t kompyuternykh isledovanii, Moskva–Izhevsk, 2004

[3] Sosov E. N., “Otnositelnyi chebyshevskii tsentr konechnogo mnozhestva geodezicheskogo prostranstva”, Izv. vuzov. Matem., 2008, no. 4, 66–72 | MR | Zbl

[4] Rao T. S. S. R. K., “Chebyshev centres and centrable sets”, Proc. Amer. Math. Soc., 130:9 (2002), 2593–2598 | DOI | MR | Zbl

[5] Bandyopadhyay P., Dutta S., “Weighted Chebyshev centres and intersection properties of balls in Banach spaces”, Function spaces (Edwadswille, IL, 2002), Contemp. Math., 328, Amer. Math. Soc., Providence, RI, 2003, 43–58 | DOI | MR | Zbl