An identification problem of coefficient in the special form at nonlinear lowest term for two-dimensional semilinear parabolic equation with the Cauchy data
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 22-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider the problem of identification of coefficient at nonlinear lowest term for two-dimensional semilinear parabolic equation. The sought-for coefficient depends on all variables and has the form of the sum of two functions each of them depends on time and on a spatial variable. The indicated inverse problem is reduced to non-classical direct problem which contains the traces of unknown function and its derivatives. The investigation of existence and uniqueness of solution of the auxiliary direct problem is carried out by means of the weak approximation method. We prove theorems of existence and uniqueness of the inverse problem solution in classes of smooth bounded functions. We present an example of input data satisfying the conditions of the proved theorems and corresponding solution.
Keywords: inverse problem, semilinear parabolic equation, weak approximation method, coefficient at lowest term, Cauchy problem, existence and uniqueness of solution.
@article{IVM_2015_5_a2,
     author = {E. N. Kriger and I. V. Frolenkov},
     title = {An identification problem of coefficient in the special form at nonlinear lowest term for two-dimensional semilinear parabolic equation with the {Cauchy} data},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--37},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a2/}
}
TY  - JOUR
AU  - E. N. Kriger
AU  - I. V. Frolenkov
TI  - An identification problem of coefficient in the special form at nonlinear lowest term for two-dimensional semilinear parabolic equation with the Cauchy data
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 22
EP  - 37
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a2/
LA  - ru
ID  - IVM_2015_5_a2
ER  - 
%0 Journal Article
%A E. N. Kriger
%A I. V. Frolenkov
%T An identification problem of coefficient in the special form at nonlinear lowest term for two-dimensional semilinear parabolic equation with the Cauchy data
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 22-37
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a2/
%G ru
%F IVM_2015_5_a2
E. N. Kriger; I. V. Frolenkov. An identification problem of coefficient in the special form at nonlinear lowest term for two-dimensional semilinear parabolic equation with the Cauchy data. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 22-37. http://geodesic.mathdoc.fr/item/IVM_2015_5_a2/

[1] Belov Yu. Ya., Inverse problems for partial differential equations, VSP, Utrecht, 2002 | MR | Zbl

[2] Yanenko N. N., Metod drobnykh shagov resheniya mnogomernykh zadach matematicheskoi fiziki, Novosibirsk, 1967

[3] Afinogenova O. A., Belov Yu. Ya., Frolenkov I. V., “Stabilization of the solution to the identification problem of the source function for a one-dimensional parabolic equation”, Dokl. Mathematics, 79:1 (2009), 70–72 | DOI | MR | Zbl

[4] Belov Yu. Ya., Frolenkov I. V., “Coefficient identification problems for semilinear parabolic equations”, Dokl. Mathematics, 72:2 (2005), 737–739 | Zbl

[5] Savateev E. G., “O zadache identifikatsii koeffitsienta parabolicheskogo uravneniya”, Sib. matem. zhurn., 36:1 (1995), 177–185 | MR | Zbl

[6] Kozhanov A. I., “Nelineinye nagruzhennye uravneniya i obratnye zadachi”, Zhurn. vychisl. matem. i matem. fiziki, 44:4 (2004), 694–716 | MR | Zbl

[7] Frolenkov I. V., Kriger E. N., “O zadache identifikatsii funktsii istochnika spetsialnogo vida v dvumernom parabolicheskom uravnenii”, J. of Siberian Federal University. Mathematics Physics, 3:4 (2010), 556–564

[8] Frolenkov I. V., Kriger E. N., “An identification problem of coefficient in the special form at source function for multi-dimensional parabolic equation with Cauchy data”, J. Siberian Federal University. Mathematics Physics, 6:2 (2013), 186–199

[9] Frolenkov I. V., Romanenko G. V., “O reshenii odnoi obratnoi zadachi dlya mnogomernogo parabolicheskogo uravneniya”, Sibirsk. zhurn. industr. matem., 15:2 (2012), 139–146 | MR