On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 17-21.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a linear elliptic second order differential equation. We prove that its solution $f$ is identical to zero if zeros of $f$ are condensed to two points along the non-collinear rays. We construct an example that shows that the requirement of non-collinearity of the rays is essential if the roots of the characteristic equation are distinct. In the case of equal roots of the characteristic equation this property will be true if and only if the rays do not belong to a straight line.
Mots-clés : elliptic equation
Keywords: uniqueness theorem.
@article{IVM_2015_5_a1,
     author = {I. A. Bikchantaev},
     title = {On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {17--21},
     publisher = {mathdoc},
     number = {5},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a1/}
}
TY  - JOUR
AU  - I. A. Bikchantaev
TI  - On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 17
EP  - 21
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_5_a1/
LA  - ru
ID  - IVM_2015_5_a1
ER  - 
%0 Journal Article
%A I. A. Bikchantaev
%T On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 17-21
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_5_a1/
%G ru
%F IVM_2015_5_a1
I. A. Bikchantaev. On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 17-21. http://geodesic.mathdoc.fr/item/IVM_2015_5_a1/

[1] Hörmander L., “Uniqueness theorems for second order elliptic differential equations”, Comm. Partial Differ. Equat., 8:1 (1983), 21–64 | DOI | MR | Zbl

[2] Meshkov V. Z., “Teorema edinstvennosti dlya ellipticheskikh uravnenii vtorogo poryadka”, Matem. sb., 129(171):3 (1986), 386–396 | MR | Zbl

[3] Bikchantaev I. A., “O mnozhestvakh edinstvennosti dlya ellipticheskogo uravneniya s postoyannymi koeffitsientami”, Differents. uravneniya, 47:2 (2011), 278–282 | MR | Zbl

[4] Bitsadze A. V., Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966