On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 17-21
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider a linear elliptic second order differential equation. We prove that its solution $f$ is identical to zero if zeros of $f$ are condensed to two points along the non-collinear rays. We construct an example that shows that the requirement of non-collinearity of the rays is essential if the roots of the characteristic equation are distinct. In the case of equal roots of the characteristic equation this property will be true if and only if the rays do not belong to a straight line.
Mots-clés :
elliptic equation
Keywords: uniqueness theorem.
Keywords: uniqueness theorem.
@article{IVM_2015_5_a1,
author = {I. A. Bikchantaev},
title = {On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {17--21},
publisher = {mathdoc},
number = {5},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_5_a1/}
}
TY - JOUR AU - I. A. Bikchantaev TI - On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 17 EP - 21 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_5_a1/ LA - ru ID - IVM_2015_5_a1 ER -
%0 Journal Article %A I. A. Bikchantaev %T On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 17-21 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_5_a1/ %G ru %F IVM_2015_5_a1
I. A. Bikchantaev. On one inner theorem of uniqueness for linear elliptic second order equation with constant coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2015), pp. 17-21. http://geodesic.mathdoc.fr/item/IVM_2015_5_a1/