Conditional correctness of boundary-value problem for composite fourth-order differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 65-74.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we investigate uniqueness and conditional stability of a solution to ill-posed boundary-value problem for an equation of mixed-composite type. We give proofs of uniqueness and conditional stability of a solution on a set of correctness.
Keywords: ill-posed boundary value problem, mixed-composite type equation, conditional stability, set of correctness, a priori estimate.
@article{IVM_2015_4_a7,
     author = {K. S. Fayazov and I. O. Khazhiev},
     title = {Conditional correctness of boundary-value problem for composite fourth-order differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {65--74},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_4_a7/}
}
TY  - JOUR
AU  - K. S. Fayazov
AU  - I. O. Khazhiev
TI  - Conditional correctness of boundary-value problem for composite fourth-order differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 65
EP  - 74
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_4_a7/
LA  - ru
ID  - IVM_2015_4_a7
ER  - 
%0 Journal Article
%A K. S. Fayazov
%A I. O. Khazhiev
%T Conditional correctness of boundary-value problem for composite fourth-order differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 65-74
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_4_a7/
%G ru
%F IVM_2015_4_a7
K. S. Fayazov; I. O. Khazhiev. Conditional correctness of boundary-value problem for composite fourth-order differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 65-74. http://geodesic.mathdoc.fr/item/IVM_2015_4_a7/

[1] Pulkin I. S., “Gevrey problem for parabolic equations with changing time direction”, Electronic J. Diff. Equat., 2006 (2006), No. 50, 9 pp. | MR

[2] Kislov N. V., “Neodnorodnye kraevye zadachi dlya differentsialno-operatornykh uravnenii smeshannogo tipa i ikh prilozheniya”, Matem. sb., 125(167):1 (1984), 19–37 | MR | Zbl

[3] Lavrentev M. M., Savelev L. Ya., Lineinye operatory i nekorrektnye zadachi, Nauka, M., 1991 | MR | Zbl

[4] Fayazov K. S., “Nekorrektnaya kraevaya zadacha dlya odnogo uravneniya smeshannogo tipa vtorogo poryadka”, Uzbeksk. matem. zhurn., 1995, no. 2, 89–93 | MR

[5] Yanenko N. N., Novikov V. A., “Ob odnoi modeli zhidkosti s znakoperemennym koeffitsientom vyazkosti”, Chislennye metody mekhaniki sploshnoi sredy (Novosibirsk), 4:2 (1973), 142–147

[6] Bukhgeim A. L., Vvedenie v teoriyu obratnykh zadach, Nauka, Novosibirsk, 1988 | MR