Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2015_4_a7, author = {K. S. Fayazov and I. O. Khazhiev}, title = {Conditional correctness of boundary-value problem for composite fourth-order differential equation}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {65--74}, publisher = {mathdoc}, number = {4}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2015_4_a7/} }
TY - JOUR AU - K. S. Fayazov AU - I. O. Khazhiev TI - Conditional correctness of boundary-value problem for composite fourth-order differential equation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 65 EP - 74 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_4_a7/ LA - ru ID - IVM_2015_4_a7 ER -
%0 Journal Article %A K. S. Fayazov %A I. O. Khazhiev %T Conditional correctness of boundary-value problem for composite fourth-order differential equation %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2015 %P 65-74 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2015_4_a7/ %G ru %F IVM_2015_4_a7
K. S. Fayazov; I. O. Khazhiev. Conditional correctness of boundary-value problem for composite fourth-order differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 65-74. http://geodesic.mathdoc.fr/item/IVM_2015_4_a7/
[1] Pulkin I. S., “Gevrey problem for parabolic equations with changing time direction”, Electronic J. Diff. Equat., 2006 (2006), No. 50, 9 pp. | MR
[2] Kislov N. V., “Neodnorodnye kraevye zadachi dlya differentsialno-operatornykh uravnenii smeshannogo tipa i ikh prilozheniya”, Matem. sb., 125(167):1 (1984), 19–37 | MR | Zbl
[3] Lavrentev M. M., Savelev L. Ya., Lineinye operatory i nekorrektnye zadachi, Nauka, M., 1991 | MR | Zbl
[4] Fayazov K. S., “Nekorrektnaya kraevaya zadacha dlya odnogo uravneniya smeshannogo tipa vtorogo poryadka”, Uzbeksk. matem. zhurn., 1995, no. 2, 89–93 | MR
[5] Yanenko N. N., Novikov V. A., “Ob odnoi modeli zhidkosti s znakoperemennym koeffitsientom vyazkosti”, Chislennye metody mekhaniki sploshnoi sredy (Novosibirsk), 4:2 (1973), 142–147
[6] Bukhgeim A. L., Vvedenie v teoriyu obratnykh zadach, Nauka, Novosibirsk, 1988 | MR