Nonlocal problem with generalized operators of fractional differentiation for an equation of mixed type in an unbounded domain
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 60-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

For mixed-type equation we study the problem with generalized operators of fractional differentiation whose kernels contain the Gauss hypergeometric functions. Under restrictions in the form of inequalities on known functions and various parameters of operators we prove the unique solvability of the posed boundary-value problem.
Keywords: Riemann–Liouville integral and derivative of fractional order, singular integral equation, Fredholm equation, Gauss hypergeometric function.
@article{IVM_2015_4_a6,
     author = {O. A. Repin and S. K. Kumykova},
     title = {Nonlocal problem with generalized operators of fractional differentiation for an equation of mixed type in an unbounded domain},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {60--64},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_4_a6/}
}
TY  - JOUR
AU  - O. A. Repin
AU  - S. K. Kumykova
TI  - Nonlocal problem with generalized operators of fractional differentiation for an equation of mixed type in an unbounded domain
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 60
EP  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_4_a6/
LA  - ru
ID  - IVM_2015_4_a6
ER  - 
%0 Journal Article
%A O. A. Repin
%A S. K. Kumykova
%T Nonlocal problem with generalized operators of fractional differentiation for an equation of mixed type in an unbounded domain
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 60-64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_4_a6/
%G ru
%F IVM_2015_4_a6
O. A. Repin; S. K. Kumykova. Nonlocal problem with generalized operators of fractional differentiation for an equation of mixed type in an unbounded domain. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 60-64. http://geodesic.mathdoc.fr/item/IVM_2015_4_a6/

[1] Saigo M., “A remark on integral operators involving the Gauss hypergeometric function”, Math. Rep. Kyushu Univ., 11:2 (1978), 135–143 | MR | Zbl

[2] Samko S. G., Kilbas A. A., Marichev O. I., Integraly i proizvodnye drobnogo poryadka i nekotorye ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[3] Repin O. A., Kraevye zadachi so smescheniem dlya uravnenii giperbolicheskogo i smeshannogo tipov, Izd-vo Saratovsk. gos. un-ta, Samarsk. fil., 1992 | MR | Zbl

[4] Repin O. A., Kumykova S. K., “Nelokalnaya zadacha s drobnymi proizvodnymi dlya uravneniya smeshannogo tipa”, Izv. vuzov. Matem., 2014, no. 8, 79–85 | Zbl

[5] Smirnov M. M., Vyrozhdayuschiesya ellipticheskie i giperbolicheskie uravneniya, Nauka, M., 1966 | MR

[6] Kumykova S. K., “Ob odnoi zadache s nelokalnymi usloviyami na kharakteristikakh dlya uravneniya smeshannogo tipa”, Differents. uravneniya, 10:1 (1974), 78–88 | MR | Zbl

[7] Repin O. A., Kumykova S. K., “Ob odnoi kraevoi zadache so smescheniem dlya uravneniya smeshannogo tipa v neogranichennoi oblasti”, Differents. uravneniya, 48:8 (2012), 1140–1149 | MR | Zbl

[8] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR | Zbl