Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 35-45

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we give a characterization of a $w^*$-continuous orthogonal vector field $F$ over a $W^*$-algebra of type $I_2$ in terms of reductions of $F$ on the center of the algebra. As an application we obtain a new proof of the assertion that an arbitrary $w^*$-continuous orthogonal vector field over a $W^*$-algebra of type $I_2$ is stationary.
Keywords: $W^*$-algebra, orthogonal vector field.
@article{IVM_2015_4_a3,
     author = {G. D. Lugovaya and A. N. Sherstnev},
     title = {Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--45},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/}
}
TY  - JOUR
AU  - G. D. Lugovaya
AU  - A. N. Sherstnev
TI  - Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 35
EP  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/
LA  - ru
ID  - IVM_2015_4_a3
ER  - 
%0 Journal Article
%A G. D. Lugovaya
%A A. N. Sherstnev
%T Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 35-45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/
%G ru
%F IVM_2015_4_a3
G. D. Lugovaya; A. N. Sherstnev. Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 35-45. http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/