Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 35-45.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper we give a characterization of a $w^*$-continuous orthogonal vector field $F$ over a $W^*$-algebra of type $I_2$ in terms of reductions of $F$ on the center of the algebra. As an application we obtain a new proof of the assertion that an arbitrary $w^*$-continuous orthogonal vector field over a $W^*$-algebra of type $I_2$ is stationary.
Keywords: $W^*$-algebra, orthogonal vector field.
@article{IVM_2015_4_a3,
     author = {G. D. Lugovaya and A. N. Sherstnev},
     title = {Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--45},
     publisher = {mathdoc},
     number = {4},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/}
}
TY  - JOUR
AU  - G. D. Lugovaya
AU  - A. N. Sherstnev
TI  - Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 35
EP  - 45
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/
LA  - ru
ID  - IVM_2015_4_a3
ER  - 
%0 Journal Article
%A G. D. Lugovaya
%A A. N. Sherstnev
%T Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 35-45
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/
%G ru
%F IVM_2015_4_a3
G. D. Lugovaya; A. N. Sherstnev. Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 35-45. http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/

[1] Masani P., “Orthogonally scattered measure”, Advances Math., 2 (1968), 61–117 | DOI | MR | Zbl

[2] Masani P., “Quasi-isometric measures and their applications”, Bull. Amer. Math. Soc., 76 (1976), 427–528 | DOI | MR

[3] Goldstein S., Jaite R., “Second-order fields over $W^*$-algebras”, Bull. de l'Acad. polon. de sci., ser. math., 30:5–6 (1982), 255–259 | MR

[4] Goldstein S., “Stationarity of operator algebras”, J. Funct. Anal., 118 (1993), 275–308 | DOI | MR | Zbl

[5] Sherstnev A. N., Metody bilineinykh form v nekommutativnoi teorii mery i integrala, Fizmatlit, M., 2008 | Zbl

[6] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, N.Y.–Heidelberg–Berlin, 1971 | MR | Zbl

[7] Segal I., “Equivalence of measure spaces”, Amer. J. Math., 73 (1951), 275–313 | DOI | MR | Zbl

[8] Lugovaya G. D., Sherstnev A. N., “On topological properties of orthogonal vector fields”, Lobachevskii J. Math., 32:2 (2011), 125–127 | DOI | MR | Zbl

[9] Sherstnev A. N., Measures on projections in a $W^*$-algebra of type $I_2$, 23 Dec. 2011, 8 pp., arXiv: 1112.5569v1[math.OA]