Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 35-45
Voir la notice de l'article provenant de la source Math-Net.Ru
In the paper we give a characterization of a $w^*$-continuous orthogonal vector field $F$ over a $W^*$-algebra of type $I_2$ in terms of reductions of $F$ on the center of the algebra. As an application we obtain a new proof of the assertion that an arbitrary $w^*$-continuous orthogonal vector field over a $W^*$-algebra of type $I_2$ is stationary.
Keywords:
$W^*$-algebra, orthogonal vector field.
@article{IVM_2015_4_a3,
author = {G. D. Lugovaya and A. N. Sherstnev},
title = {Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {35--45},
publisher = {mathdoc},
number = {4},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/}
}
TY - JOUR AU - G. D. Lugovaya AU - A. N. Sherstnev TI - Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$ JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2015 SP - 35 EP - 45 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/ LA - ru ID - IVM_2015_4_a3 ER -
G. D. Lugovaya; A. N. Sherstnev. Description of orthogonal vector fields over $W^*$-algebra of type~$I_2$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2015), pp. 35-45. http://geodesic.mathdoc.fr/item/IVM_2015_4_a3/