Solving the problem of Bingham fluid flow in cylindrical pipeline
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 82-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider an elliptic variational inequality in a circular domain, which simulates viscoplastic Bingham flow in a pipe. This variational inequality is approximated by finite-difference scheme on a grid in polar coordinates. To solve the finite-dimensional problem we propose a generalized Uzawa-type iterative method. We prove the convergence of the iterative method.
Keywords: Bingham's flow, finite-difference approximation, iterative method.
@article{IVM_2015_2_a9,
     author = {A. V. Lapin and A. D. Romanenko},
     title = {Solving the problem of {Bingham} fluid flow in cylindrical pipeline},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {82--86},
     publisher = {mathdoc},
     number = {2},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2015_2_a9/}
}
TY  - JOUR
AU  - A. V. Lapin
AU  - A. D. Romanenko
TI  - Solving the problem of Bingham fluid flow in cylindrical pipeline
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2015
SP  - 82
EP  - 86
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2015_2_a9/
LA  - ru
ID  - IVM_2015_2_a9
ER  - 
%0 Journal Article
%A A. V. Lapin
%A A. D. Romanenko
%T Solving the problem of Bingham fluid flow in cylindrical pipeline
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2015
%P 82-86
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2015_2_a9/
%G ru
%F IVM_2015_2_a9
A. V. Lapin; A. D. Romanenko. Solving the problem of Bingham fluid flow in cylindrical pipeline. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2015), pp. 82-86. http://geodesic.mathdoc.fr/item/IVM_2015_2_a9/

[1] Mosolov P. P., Myasnikov V. P., “Variatsionnye metody v teorii techenii vyazko-plasticheskoi sredy”, PMM, 29:3 (1965), 468–492 | Zbl

[2] Mosolov P. P., Myasnikov V. P., “O kachestvennykh osobennostyakh techenii vyazko-plasticheskoi sredy v trubakh”, PMM, 31:3 (1967), 609–613 | MR | Zbl

[3] Dyuvo G., Lions Zh.-L., Neravenstva v mekhanike i fizike, Nauka, M., 1980 | MR

[4] Glovinski R., Lions Zh.-L., Tremoler R., Chislennoe issledovanie variatsionnykh neravenstv, Mir, M., 1979 | MR

[5] Glowinski R., Numerical methods for nonlinear variational problems, Springer-Verlag, N.Y., 1984 | MR | Zbl

[6] Dean E. J., Glowinski R., Guidoboni G., “On the numerical simulation of Bingham visco-plastic flow: old and new results”, J. Non-Newtonian Fluid Mech., 142 (2007), 36–62 | DOI | Zbl

[7] Muravleva E. A., Olshanskii M. A., “Two finite-difference schemes for calculation of Bingham fluid flows in a cavity”, Rus. J. Num. Anal. Math. Model., 23:6 (2008), 615–634 | MR | Zbl

[8] Muravleva E. A., “Finite-difference schemes for the computation of viscoplastic medium flows in a channel”, Math. Model. and Comput. Simulations, 1:6 (2009), 768–779 | DOI | MR

[9] Fortin M., Glowinski R., Augmented Lagrangan methods, North-Holland, Amsterdam–N.Y., 1983 | MR | Zbl

[10] Glowinski R., LeTallec P., Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics, SIAM studies in applied mathematics, 9, SIAM, Philadelphia, PA, 1989 | MR | Zbl

[11] Lapin A., “Preconditioned Uzawa-type methods for finite-dimensional constrained saddle point problems”, Lobachevskii J. Math., 31:4 (2010), 309–322 | DOI | MR | Zbl